Cytogenetic analysis of Miscanthus x giganteus and its parent forms

被引:8
|
作者
Chramiec-Glabik, Andrzej [2 ]
Grabowska-Joachimiak, Aleksandra [1 ]
Sliwinska, Elwira [3 ]
Legutko, Justyna [1 ]
Kula, Adam [1 ]
机构
[1] Agr Univ Krakow, Dept Plant Breeding & Seed Sci, Cytogenet Grp, PL-31140 Krakow, Poland
[2] Jagiellonian Univ, Inst Bot, Dept Plant Cytol & Embryol, PL-31044 Krakow, Poland
[3] Univ Technol & Life Sci, Dept Genet & Plant Breeding, Lab Mol Biol & Cytometry, PL-85789 Bydgoszcz, Poland
关键词
Miscanthus; karyotype; C-banding/DAPI; heterochromatin; DNA amount; IN-SITU HYBRIDIZATION; NUCLEAR-DNA CONTENT; GENOME SIZE; JAPONICUS SIEBOLD; TRNL-F; ANDROPOGONEAE; KARYOTYPE; SINENSIS; PHOTOSYNTHESIS; CHROMOSOMES;
D O I
10.1080/00087114.2012.740192
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
This study aimed at comparative karyotype analysis and measurement of the nuclear DNA amount in giant miscanthus, Miscanthus x giganteus, and its hypothetical ancestors: eulalia grass (M. sacchariflorus) and porcupine grass (M. sinensis). The triploid chromosome number 2n = 57 in M. x giganteus and the diploid chromosome number 2n = 38 in the other species were confirmed. In the karyotype of giant miscanthus three satellite chromosomes were observed, whereas in M. sinensis there were two and in M. sacchariflorus probably four chromosomes of this type. In the first species 1-4 B-chromosomes were evidenced. The highest proportion of the C-banding/DAPI (4',6-diamidino-2-phenylindole) positive heterochromatin was found in M. sinensis cv. Gracillimus, and the least in the M. sinensis M07 genome. The banding patterns observed in M. x giganteus resembled those observed in M. sacchariflorus. The 2C nuclear DNA content in M. x giganteus was 7.47 pg and in M. sacchariflorus it was 5.14 pg; two analysed lines of M. sinensis differed in 2C DNA value (5.18 pg and 5.49 pg).
引用
收藏
页码:234 / 242
页数:9
相关论文
共 50 条
  • [1] CYTOGENETIC ANALYSIS OF MISCANTHUS-GIGANTEUS, AN INTERSPECIFIC HYBRID
    LINDELAURSEN, I
    HEREDITAS, 1993, 119 (03) : 297 - 300
  • [2] MORPHOGENESIS OF MISCANTHUS x GIGANTEUS IN VITRO
    Klyachenko, O. L.
    Nekrut, O. E.
    AGRICULTURAL SCIENCE AND PRACTICE, 2018, 5 (02): : 13 - 17
  • [3] Response of Miscanthus X giganteus and Miscanthus sinensis to Postemergence Herbicides
    Everman, Wesley J.
    Lindsey, Alexander J.
    Henry, Gerald M.
    Glaspie, Calvin F.
    Phillips, Kristin
    McKenney, Cynthia
    WEED TECHNOLOGY, 2011, 25 (03) : 398 - 403
  • [4] Synthetic polyploid production of Miscanthus sacchariflorus, Miscanthus sinensis, and Miscanthus x giganteus
    Chae, Won Byoung
    Hong, Sae J.
    Gifford, Justin M.
    Rayburn, Albert Lane
    Widholm, Jack M.
    Juvik, John A.
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2013, 5 (03): : 338 - 350
  • [5] Miscanthus X giganteus Response to Tillage and Glyphosate
    Anderson, Eric K.
    Voigt, Thomas B.
    Bollero, German A.
    Hager, Aaron G.
    WEED TECHNOLOGY, 2011, 25 (03) : 356 - 362
  • [6] Delignification of Miscanthus x Giganteus by the Milox process
    Ligero, P.
    Vega, A.
    Villaverde, J. J.
    BIORESOURCE TECHNOLOGY, 2010, 101 (09) : 3188 - 3193
  • [7] An Attempt to Restore the Fertility of Miscanthus x giganteus
    Kopec, Przemyslaw
    Plazek, Agnieszka
    AGRONOMY-BASEL, 2023, 13 (02):
  • [8] Plant tissue characteristics of Miscanthus x giganteus
    Pisani, Oliva
    Liebert, Dan
    Strickland, Timothy C.
    Coffin, Alisa W.
    SCIENTIFIC DATA, 2022, 9 (01)
  • [9] Reynoutria bohemica -: an alternative Miscanthus x giganteus?
    Pude, R
    Franken, H
    BODENKULTUR, 2001, 52 (01): : 19 - 27
  • [10] Induced Mutations for Enhancing Variability of Giant Miscanthus (Miscanthus x giganteus)
    Perera, Dinum
    Baldwin, Brian S.
    Reichert, Nancy A.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2013, 49 : S64 - S64