Electron Beam Melting of a β-Solidifying Intermetallic Titanium Aluminide Alloy

被引:32
|
作者
Wartbichler, Reinhold [1 ]
Clemens, Helmut [1 ]
Mayer, Svea [1 ]
机构
[1] Univ Leoben, Dept Mat Sci, Franz Josef Str 18, A-8700 Leoben, Austria
关键词
additive manufacturing; microstructures; phase diagrams; textures; titanium aluminides; MECHANICAL-PROPERTIES; MICROSTRUCTURE; TEXTURE; DESIGN;
D O I
10.1002/adem.201900800
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The structural features of an electron-beam-melted titanium aluminide alloy are presented. The microstructure consisting of gamma-TiAl, alpha(2)-Ti3Al, and beta(o)-TiAl reveals inhomogeneous phase and Al distributions, which are quantified by electron probe microanalysis. Electron backscatter diffraction is utilized to indicate a solidification via the beta-phase preferably along the < 001 > direction, resulting in a {001} beta(o) fiber texture parallel to the building direction. These findings are correlated to a calculated isopleth section of the Ti-Al-Nb-Mo system and the corresponding phase fraction diagram. The investigated beta-solidifying gamma-TiAl-based alloy, therefore, combines both the characteristics of electronbeam-melted Ti and TiAl alloys.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [1] SELECTIVE ELECTRON BEAM MELTING OF TITANIUM AND TITANIUM ALUMINIDE ALLOYS
    Tang, Huiping
    Lu, Shenglu
    Jia, Wenpeng
    Yang, Guangyu
    Qian, Ma
    INTERNATIONAL JOURNAL OF POWDER METALLURGY, 2014, 50 (01): : 57 - 64
  • [2] Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting
    Murr, L. E.
    Gaytan, S. M.
    Ceylan, A.
    Martinez, E.
    Martinez, J. L.
    Hernandez, D. H.
    Machado, B. I.
    Ramirez, D. A.
    Medina, F.
    Collins, S.
    Wicker, R. B.
    ACTA MATERIALIA, 2010, 58 (05) : 1887 - 1894
  • [3] Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting
    Tang, H. P.
    Yang, G. Y.
    Jia, W. P.
    He, W. W.
    Lu, S. L.
    Qian, M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 636 : 103 - 107
  • [4] Effect of melt parameters on density and surface roughness in electron beam melting of gamma titanium aluminide alloy
    Mohammad, Ashfaq
    Al-Ahmari, Abdurahman Mushabab
    AlFaify, Abdullah
    Mohammed, Muneer Khan
    RAPID PROTOTYPING JOURNAL, 2017, 23 (03) : 474 - 485
  • [5] ADDITIVE MANUFACTURING OF GAMMA TITANIUM ALUMINIDE PARTS BY ELECTRON BEAM MELTING
    Sabbadini, Silvia
    Tassa, Oriana
    Gennaro, P.
    Ackelid, Ulf
    TMS 2010 139TH ANNUAL MEETING & EXHIBITION - SUPPLEMENTAL PROCEEDINGS, VOL 1: MATERIALS PROCESSING AND PROPERTIES, 2010, : 267 - +
  • [6] Microstructural Properties of Gamma Titanium Aluminide Manufactured by Electron Beam Melting
    Franzen, Sanna Fager
    Karlsson, Joakim
    Dehoff, Ryan
    Ackelid, Ulf
    Rios, Orlando
    Parish, Chad
    Peters, William
    TMS2011 SUPPLEMENTAL PROCEEDINGS, VOL 3: GENERAL PAPER SELECTIONS, 2011, : 455 - 462
  • [7] Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy
    Loeber, Lukas
    Schimansky, Frank Peter
    Kuehn, Uta
    Pyczak, Florian
    Eckert, Juergen
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2014, 214 (09) : 1852 - 1860
  • [8] Drilling experiments on a gamma titanium aluminide obtained via electron beam melting
    Priarone, Paolo Claudio
    Rizzuti, Stefania
    Ruffa, Suela
    Settineri, Luca
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 69 (1-4): : 483 - 490
  • [9] Drilling experiments on a gamma titanium aluminide obtained via electron beam melting
    Paolo Claudio Priarone
    Stefania Rizzuti
    Suela Ruffa
    Luca Settineri
    The International Journal of Advanced Manufacturing Technology, 2013, 69 : 483 - 490
  • [10] Additive Manufacturing of Titanium Aluminide Alloy Ti–Al–V–Nb–Cr–Gd by Selective Electron Beam Melting
    P. V. Panin
    E. A. Lukina
    I. A. Bogachev
    P. N. Medvedev
    S. A. Naprienko
    Metallurgist, 2023, 67 : 324 - 337