Prediction of Burned Areas Using the Random Forest Classifier in the Minas Gerais State

被引:4
|
作者
dos Santos, Eliana Elizabet [1 ]
Sena, Nathalie Cruz [1 ]
Balestrin, Diego [1 ]
Fernandes Filho, Elpidio Inacio [1 ]
da Costa, Liovando Marciano [1 ]
Zeferino, Leiliane Bozzi [1 ]
机构
[1] Univ Fed Vicosa UFV, Av Peter Henry Rolfs S-N,Campus Univ, BR-36570000 Vicosa, MG, Brazil
来源
FLORESTA E AMBIENTE | 2020年 / 27卷 / 03期
关键词
fires; modeling; environmental monitoring;
D O I
10.1590/2179-8087.011518
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Fire behavior prediction models can assist environmental agencies with fire prevention and control. This study aimed to adjust a fire prediction model for the state of Minas Gerais, Brazil. Using the R program and hotspots provided by the National Institute for Space Research (INPE) for 2010, prediction of the probability of fires through the Random Forest algorithm was conducted using the Bootstrapping method. The model generated a prediction map with global kappa value of 0.65. External validation was performed with hotspots in 2015. Results showed that 58% of the hotspots are in areas with ignition probability > 50%, being 24% of them in areas with 25-50% probability, and 17% in areas with < 25% probability. These results were considered satisfactory, demonstrating that the model is suitable for predicting fires.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Outlier Prediction Using Random Forest Classifier
    Mohandoss, Divya Pramasani
    Shi, Yong
    Suo, Kun
    [J]. 2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 27 - 33
  • [2] Alfalfa cultivars under areas of influence of the Atlantic Forest in the Minas Gerais State, Brazil
    Botrel, MD
    Ferreira, RD
    Alvim, MJ
    Xavier, DF
    [J]. PESQUISA AGROPECUARIA BRASILEIRA, 2001, 36 (11) : 1437 - 1442
  • [3] PERFORMANCE OF THE PUBLIC FOREST FOMENTATION OF MINAS GERAIS STATE
    Cordeiro, Sidney Araujo
    da Silva, Marcio Lopes
    Goncalves Jacovine, Laercio Antonio
    Valverde, Sebastiao Renato
    Rocha, Jose Ludgero
    Soares, Naisy Silva
    [J]. CERNE, 2009, 15 (03) : 273 - 281
  • [4] CHARACTERIZATION OF A FOREST INCENTIVE PROGRAM IN MINAS GERAIS STATE
    Pereira de Rezende, Jose Luiz
    Jorge de Padua, Claudio Tulio
    de Oliveira, Antonio Donizette
    Soares Scolforo, Jose Roberto
    Coelho Junior, Luiz Moreira
    [J]. CERNE, 2009, 15 (03) : 295 - 302
  • [5] DOCUMENTAL ANALYSIS OF FOREST MANAGEMENT PLANS IN FOREST FORMATION AREAS IN MINAS GERAIS
    da Silva Coelho, Danilo Jose
    da Silva, Agostinho Lopes
    Boechat Soares, Carlos Pedro
    Romarco de Oliveira, Marcio Leles
    de Freitas, Joberto Veloso
    [J]. REVISTA ARVORE, 2008, 32 (01): : 69 - 80
  • [6] Prediction of Incident Delirium Using a Random Forest classifier
    John P. Corradi
    Stephen Thompson
    Jeffrey F. Mather
    Christine M. Waszynski
    Robert S. Dicks
    [J]. Journal of Medical Systems, 2018, 42
  • [7] Prediction of Incident Delirium Using a Random Forest classifier
    Corradi, John P.
    Thompson, Stephen
    Mather, Jeffrey F.
    Waszynski, Christine M.
    Dicks, Robert S.
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (12)
  • [8] Richness, composition and similarity of bird community in forest remnants and anthropic areas at southern of Minas Gerais state
    de Moura, Aloysio Souza
    Correa, Bruno Senna
    Machado, Felipe Santana
    [J]. REVISTA AGROGEOAMBIENTAL, 2015, 7 (01) : 41 - 52
  • [9] Football Match Result Prediction Using the Random Forest Classifier
    Pugsee, Pakawan
    Pattawong, Pattarachai
    [J]. PROCEEDINGS OF 2019 2ND INTERNATIONAL CONFERENCE ON BIG DATA TECHNOLOGIES (ICBDT 2019), 2019, : 154 - 158
  • [10] Default Risk Prediction Using Random Forest and XGBoosting Classifier
    Sharma, Alok Kumar
    Li, Li-Hua
    Ahmad, Ramli
    [J]. 2021 INTERNATIONAL CONFERENCE ON SECURITY AND INFORMATION TECHNOLOGIES WITH AI, INTERNET COMPUTING AND BIG-DATA APPLICATIONS, 2023, 314 : 91 - 101