Convolutional Autoencoder based Feature Extraction in Radar Data Analysis

被引:13
|
作者
Lee, Hansoo [1 ]
Kim, Jonggeun [1 ]
Kim, Baekcheon [1 ]
Kim, Sungshin [1 ]
机构
[1] Pusan Natl Univ, Dept Elect & Comp Engn, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
convolutional autoencoder; feature extraction; radar images; DIMENSIONALITY; CLASSIFICATION; DEEP;
D O I
10.1109/SCIS-ISIS.2018.00023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the challenging research topics is a fast, accurate, and human-like image processing method. The convolutional neural network recently shows optimistic results, but it needs a vast amount of computational resources. Utilizing feature extraction and dimensionality reduction algorithm might be a solution to increase computational efficiency. In this paper, we implemented a convolutional autoencoder for performing feature extraction and dimensionality reduction which not only can solve nonlinear problems but also easily combine the convolutional neural network. The implemented convolutional autoencoder derives remarkable reconstruction error in the experiments using the two-dimensional radar data.
引用
收藏
页码:81 / 84
页数:4
相关论文
共 50 条
  • [1] Convolutional Autoencoder Based Feature Extraction and Clustering for Customer Load Analysis
    Ryu, Seunghyoung
    Choi, Hyungeun
    Lee, Hyoseop
    Kim, Hongseok
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (02) : 1048 - 1060
  • [2] Feature Extraction for Class Imbalance Using a Convolutional Autoencoder and Data Sampling
    Salekshahrezaee, Zahra
    Leevy, Joffrey L.
    Khoshgoftaar, Taghi M.
    [J]. 2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 217 - 223
  • [3] Convolutional Autoencoder for Feature Extraction in Tactile Sensing
    Polic, Marsela
    Krajacic, Ivona
    Lepora, Nathan
    Orsag, Matko
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04) : 3671 - 3678
  • [4] A Feature Extraction Method Based on Convolutional Autoencoder for Plant Leaves Classification
    Paco Ramos, Mery M.
    Paco Ramos, Vanessa M.
    Loaiza Fabian, Arnold
    Osco Mamani, Erbert F.
    [J]. APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI 2019, 2019, 1096 : 143 - 154
  • [5] A Feature Extraction Method Based on Convolutional Autoencoder for Plant Leaves Classification
    Paco Ramos, Mery
    Paco Ramos, Vanessa
    Loaiza Fabian, Arnold
    Osco Mamani, Erbert
    [J]. 2019 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS IN COMPUTATIONAL INTELLIGENCE (COLCACI), 2019,
  • [6] Feature extraction of fields of fluid dynamics data using sparse convolutional autoencoder
    Obayashi, Wataru
    Aono, Hikaru
    Tatsukawa, Tomoaki
    Fujii, Kozo
    [J]. AIP ADVANCES, 2021, 11 (10)
  • [7] A Convolutional Autoencoder Approach for Feature Extraction in Virtual Metrology
    Maggipinto, Marco
    Masiero, Chiara
    Beghi, Alessandro
    Susto, Gian Antonio
    [J]. 28TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING (FAIM2018): GLOBAL INTEGRATION OF INTELLIGENT MANUFACTURING AND SMART INDUSTRY FOR GOOD OF HUMANITY, 2018, 17 : 126 - 133
  • [8] Unsupervised change-detection based on Convolutional-autoencoder Feature Extraction
    Bergamasco, Luca
    Saha, Sudipan
    Bovolo, Francesca
    Bruzzone, Lorenzo
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [9] Dynamic Texture Feature Extraction Based on multi-scale Convolutional Autoencoder
    Yi, Huimin
    Zhu, Ziqi
    Gu, Yangwei
    [J]. 2021 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS 2021), 2021, : 108 - 112
  • [10] Latent Feature Separation and Extraction with Multiple Parallel Encoders for Convolutional Autoencoder
    Kim, Jaehyun
    Kim, Myungjun
    Shin, Hyunjung
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (IEEE BIGCOMP 2022), 2022, : 263 - 266