共 14 条
Histone Deacetylase Inhibitor Upregulates Peroxisomal Fatty Acid Oxidation and Inhibits Apoptotic Cell Death in Abcd1-Deficient Glial Cells
被引:15
|作者:
Singh, Jaspreet
[1
]
Khan, Mushfiquddin
[1
]
Pujol, Aurora
[2
,3
,4
]
Baarine, Mauhamad
[1
]
Singh, Inderjit
[1
]
机构:
[1] Med Univ S Carolina, Dept Pediat, Darby Children Res Inst, Charleston, SC 29425 USA
[2] Hosp Llobregat, Bellvitge Inst Biomed Res IDIBELL, Inst Neuropathol, Neurometab Dis Lab, Barcelona, Spain
[3] Ctr Biomed Res Rare Dis CIBERER, Barcelona, Spain
[4] Catalan Inst Res & Adv Studies ICREA, Barcelona, Spain
来源:
基金:
美国国家卫生研究院;
关键词:
SUBEROYLANILIDE HYDROXAMIC ACID;
X-LINKED ADRENOLEUKODYSTROPHY;
CULTURED SKIN FIBROBLASTS;
CENTRAL-NERVOUS-SYSTEM;
MOUSE MODEL;
INFLAMMATORY DISEASE;
IMPAIRED OXIDATION;
ABCD2;
TRANSPORTER;
MEMBRANE-PROTEIN;
LIGNOCERIC ACID;
D O I:
10.1371/journal.pone.0070712
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
In X-ALD, mutation/deletion of ALD gene (ABCD1) and the resultant very long chain fatty acid (VLCFA) derangement has dramatically opposing effects in astrocytes and oligodendrocytes. While loss of Abcd1 in astrocytes produces a robust inflammatory response, the oligodendrocytes undergo cell death leading to demyelination in X-linked adrenoleukodystrophy (X-ALD). The mechanisms of these distinct pathways in the two cell types are not well understood. Here, we investigated the effects of Abcd1-knockdown and the subsequent alteration in VLCFA metabolism in human U87 astrocytes and rat B12 oligodendrocytes. Loss of Abcd1 inhibited peroxisomal beta-oxidation activity and increased expression of VLCFA synthesizing enzymes, elongase of very long chain fatty acids (ELOVLs) (1 and 3) in both cell types. However, higher induction of ELOVL's in Abcd1-deficient B12 oligodendrocytes than astrocytes suggests that ELOVL pathway may play a prominent role in oligodendrocytes in X-ALD. While astrocytes are able to maintain the cellular homeostasis of antiapoptotic proteins, Abcd1-deletion in B12 oligodendrocytes downregulated the anti-apototic (Bcl-2 and Bcl-xL) and cell survival (phospho-Erk1/2) proteins, and upregulated the pro-apoptotic proteins (Bad, Bim, Bax and Bid) leading to cell loss. These observations provide insights into different cellular signaling mechanisms in response to Abcd1-deletion in two different cell types of CNS. The apoptotic responses were accompanied by activation of caspase-3 and caspase-9 suggesting the involvement of mitochondrial-caspase-9-dependent mechanism in Abcd1-deficient oligodendrocytes. Treatment with histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) corrected the VLCFA derangement both in vitro and in vivo, and inhibited the oligodendrocytes loss. These observations provide a proof-of principle that HDAC inhibitor SAHA may have a therapeutic potential for X-ALD.
引用
收藏
页数:15
相关论文