Quantum multiplexing with the orbital angular momentum of light

被引:46
|
作者
Carlos Garcia-Escartin, Juan [1 ]
Chamorro-Posada, Pedro [1 ]
机构
[1] Univ Valladolid, Dept Teor Senal & Comunicac & Ingn Telemat, ETSI Telecomunicac, E-47011 Valladolid, Spain
来源
PHYSICAL REVIEW A | 2008年 / 78卷 / 06期
关键词
multiplexing equipment; optical communication; quantum communication;
D O I
10.1103/PhysRevA.78.062320
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The orbital angular momentum (OAM) of photons offers a suitable support to carry the quantum data of multiple users. We present two optical setups that send the information of n quantum communication parties through the same free-space optical link. Those qubits can be sent simultaneously and share path, wavelength, and polarization without interference, increasing the communication capacity of the system. The first solution, a qubit combiner, merges n channels into the same link, which transmits n independent photons. The second solution, the OAM multiplexer, uses controlled-not (CNOT) gates to transfer the information of n optical channels to a single photon. Additional applications of the multiplexer circuits, such as quantum arithmetic, as well as connections to OAM sorting are discussed.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Time-division multiplexing of the orbital angular momentum of light
    Karimi, Ebrahim
    Marrucci, Lorenzo
    de Lisio, Corrado
    Santamato, Enrico
    [J]. OPTICS LETTERS, 2012, 37 (02) : 127 - 129
  • [2] Quantum orbital angular momentum of elliptically symmetric light
    Plick, William N.
    Krenn, Mario
    Fickler, Robert
    Ramelow, Sven
    Zeilinger, Anton
    [J]. PHYSICAL REVIEW A, 2013, 87 (03):
  • [3] Identifying orbital angular momentum of light in quantum wells
    Kazemi, Seyedeh Hamideh
    Mahmoudi, Mohammad
    [J]. LASER PHYSICS LETTERS, 2019, 16 (07)
  • [4] Quantum computer networks with the orbital angular momentum of light
    Carlos Garcia-Escartin, Juan
    Chamorro-Posada, Pedro
    [J]. PHYSICAL REVIEW A, 2012, 86 (03):
  • [5] Orbital Angular Momentum Spatial Division Multiplexing
    Atieh, Ahmad
    [J]. 2021 PHOTONICS NORTH (PN), 2021,
  • [6] An Evaluation of Orbital Angular Momentum Multiplexing Technology
    Lee, Doohwan
    Sasaki, Hirofumi
    Fukumoto, Hiroyuki
    Yagi, Yasunori
    Shimizu, Takashi
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (09):
  • [7] Photonic integrated chip enabling orbital angular momentum multiplexing for quantum communication
    Zahidy, Mujtaba
    Liu, Yaoxin
    Cozzolino, Daniele
    Ding, Yunhong
    Morioka, Toshio
    Oxenlowe, Leif K.
    Bacco, Davide
    [J]. NANOPHOTONICS, 2022, 11 (04) : 821 - 827
  • [8] The orbital angular momentum of light
    Allen, L
    Padgett, MJ
    Babiker, M
    [J]. PROGRESS IN OPTICS, VOL XXXIX, 1999, 39 : 291 - 372
  • [9] A revisit of orbital angular momentum multiplexing in multipath environment
    Xue, Wei
    Chen, Xiaoming
    Liu, Xiaobo
    Meng, Xiangshuai
    Zhang, Anxue
    Sha, Wei E. I.
    [J]. Journal of Communications and Information Networks, 2020, 5 (04): : 70 - 78
  • [10] Orbital Angular Momentum Multiplexing Holography for Data Storage
    Zhu, Jialong
    Wang, Le
    Zhao, Shengmei
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2023, 35 (04) : 179 - 182