Scanning-probe Single-electron Capacitance Spectroscopy

被引:0
|
作者
Walsh, Kathleen A. [1 ]
Romanowich, Megan E. [1 ]
Gasseller, Morewell [1 ,2 ]
Kuljanishvili, Irma [1 ,3 ]
Ashoori, Raymond [4 ]
Tessmer, Stuart [1 ]
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[2] Mercyhurst Univ, Dept Chem & Biochem Phys, Erie, PA 16546 USA
[3] St Louis Univ, Dept Phys, St Louis, MO 63103 USA
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
基金
美国国家科学基金会;
关键词
Physics; Issue; 77; Biophysics; Molecular Biology; Cellular Biology; Microscopy; Scanning Probe; Nanotechnology; Electronics; acceptors (solid state); donors (solid state); Solid-State Physics; tunneling microscopy; scanning capacitance microscopy; subsurface charge accumulation imaging; capacitance spectroscopy; scanning probe microscopy; single-electron spectroscopy; imaging;
D O I
10.3791/50676
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The integration of low-temperature scanning-probe techniques and single-electron capacitance spectroscopy represents a powerful tool to study the electronic quantum structure of small systems - including individual atomic dopants in semiconductors. Here we present a capacitance-based method, known as Subsurface Charge Accumulation (SCA) imaging, which is capable of resolving single-electron charging while achieving sufficient spatial resolution to image individual atomic dopants. The use of a capacitance technique enables observation of subsurface features, such as dopants buried many nanometers beneath the surface of a semiconductor material(1,2,3). In principle, this technique can be applied to any system to resolve electron motion below an insulating surface. As in other electric-field-sensitive scanned-probe techniques(4), the lateral spatial resolution of the measurement depends in part on the radius of curvature of the probe tip. Using tips with a small radius of curvature can enable spatial resolution of a few tens of nanometers. This fine spatial resolution allows investigations of small numbers (down to one) of subsurface dopants(1,2). The charge resolution depends greatly on the sensitivity of the charge detection circuitry; using high electron mobility transistors (HEMT) in such circuits at cryogenic temperatures enables a sensitivity of approximately 0.01 electrons/Hz(1/2) at 0.3 K-5.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] SINGLE-ELECTRON CAPACITANCE SPECTROSCOPY OF A FEW ELECTRON BOX
    ASHOORI, RC
    STORMER, HL
    WEINER, JS
    PFEIFFER, LN
    PEARTON, SJ
    BALDWIN, KW
    WEST, KW
    PHYSICA B-CONDENSED MATTER, 1993, 189 (1-4) : 117 - 124
  • [2] Scanning-probe Raman spectroscopy with single-molecule sensitivity
    Neacsu, Catalin C.
    Dreyer, Jens
    Behr, Nicolas
    Raschke, Markus B.
    PHYSICAL REVIEW B, 2006, 73 (19):
  • [3] SINGLE-ELECTRON CAPACITANCE SPECTROSCOPY OF SEMICONDUCTOR MICROSTRUCTURES
    ASHOORI, RC
    STORMER, HL
    WEINER, JS
    PFEIFFER, LN
    PEARTON, SJ
    BALDWIN, KW
    WEST, KW
    PHYSICA B, 1993, 184 (1-4): : 378 - 384
  • [4] Single-electron capacitance spectroscopy of vertical quantum dots using a single-electron transistor
    Koltonyuk, M
    Berman, D
    Zhitenev, NB
    Ashoori, RC
    Pfeiffer, LN
    West, KW
    APPLIED PHYSICS LETTERS, 1999, 74 (04) : 555 - 557
  • [5] Comment on "Scanning-probe Raman spectroscopy with single-molecule sensitivity"
    Domke, Katrin F.
    Pettinger, Bruno
    PHYSICAL REVIEW B, 2007, 75 (23):
  • [6] SINGLE-ELECTRON CAPACITANCE SPECTROSCOPY OF DISCRETE QUANTUM LEVELS
    ASHOORI, RC
    STORMER, HL
    WEINER, JS
    PFEIFFER, LN
    PEARTON, SJ
    BALDWIN, KW
    WEST, KW
    PHYSICAL REVIEW LETTERS, 1992, 68 (20) : 3088 - 3091
  • [7] Single-Electron Capacitance Spectroscopy of Individual Dopants in Silicon
    Gasseller, M.
    DeNinno, M.
    Loo, R.
    Harrison, J. F.
    Caymax, M.
    Rogge, S.
    Tessmer, S. H.
    NANO LETTERS, 2011, 11 (12) : 5208 - 5212
  • [8] Scanning-probe spectroscopy of semiconductor donor molecules
    Kuljanishvili, I.
    Kayis, C.
    Harrison, J. F.
    Piermarocchi, C.
    Kaplan, T. A.
    Tessmer, S. H.
    Pfeiffer, L. N.
    West, K. W.
    NATURE PHYSICS, 2008, 4 (03) : 227 - 233
  • [9] Scanning-probe spectroscopy of semiconductor donor molecules
    I. Kuljanishvili
    C. Kayis
    J. F. Harrison
    C. Piermarocchi
    T. A. Kaplan
    S. H. Tessmer
    L. N. Pfeiffer
    K. W. West
    Nature Physics, 2008, 4 : 227 - 233
  • [10] Modern methods of scanning-probe microscopy and spectroscopy
    Rekhviashvili, SS
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2002, 45 (05) : 724 - 726