Multi-output Laplacian Dynamic Ordinal Regression for Facial Expression Recognition and Intensity Estimation

被引:0
|
作者
Rudovic, Ognjen [1 ]
Pavlovic, Vladimir [2 ]
Pantic, Maja [1 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
[2] Rutgers State Univ, Dept Comp Sci, Piscataway, NJ 08855 USA
[3] Univ Twente, EEMCS, NL-7500 AE Enschede, Netherlands
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
FACE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automated facial expression recognition has received increased attention over the past two decades. Existing works in the field usually do not encode either the temporal evolution or the intensity of the observed facial displays. They also fail to jointly model multidimensional (multi-class) continuous facial behaviour data; binary classifiers - one for each target basic-emotion class - are used instead. In this paper, intrinsic topology of multidimensional continuous facial affect data is first modeled by an ordinal manifold. This topology is then incorporated into the Hidden Conditional Ordinal Random Field (H-CORF) framework for dynamic ordinal regression by constraining H-CORF parameters to lie on the ordinal manifold. The resulting model attains simultaneous dynamic recognition and intensity estimation of facial expressions of multiple emotions. To the best of our knowledge, the proposed method is the first one to achieve this on both deliberate as well as spontaneous facial affect data.
引用
收藏
页码:2634 / 2641
页数:8
相关论文
共 50 条
  • [1] Structured Output Ordinal Regression for Dynamic Facial Emotion Intensity Prediction
    Kim, Minyoung
    Pavlovic, Vladimir
    [J]. COMPUTER VISION-ECCV 2010, PT III, 2010, 6313 : 649 - 662
  • [2] Multilabel convolution neural network for facial expression recognition and ordinal intensity estimation
    Ekundayo, Olufisayo
    Viriri, Serestina
    [J]. PEERJ COMPUTER SCIENCE, 2021, 7
  • [3] Context-Sensitive Dynamic Ordinal Regression for Intensity Estimation of Facial Action Units
    Rudovic, Ognjen
    Pavlovic, Vladimir
    Pantic, Maja
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (05) : 944 - 958
  • [4] Facial Expression Intensity Estimation Using Ordinal Information
    Zhao, Rui
    Gan, Quan
    Wang, Shangfei
    Ji, Qiang
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3466 - 3474
  • [5] Bilateral Ordinal Relevance Multi-instance Regression for Facial Action Unit Intensity Estimation
    Zhang, Yong
    Zhao, Rui
    Dong, Weiming
    Hu, Bao-Gang
    Ji, Qiang
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 7034 - 7043
  • [6] Facial expression intensity estimation using label-distribution-learning-enhanced ordinal regression
    Xu, Ruyi
    Wang, Zhun
    Chen, Jingying
    Zhou, Longpu
    [J]. MULTIMEDIA SYSTEMS, 2024, 30 (01)
  • [7] Facial expression intensity estimation using label-distribution-learning-enhanced ordinal regression
    Ruyi Xu
    Zhun Wang
    Jingying Chen
    Longpu Zhou
    [J]. Multimedia Systems, 2024, 30
  • [8] Multi-output parameter estimation of dynamic systems by output shapes
    Simmons, Jeffrey C.
    Danai, Kourosh
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2015, 46 (01) : 44 - 62
  • [9] Copula Ordinal Regression for Joint Estimation of Facial Action Unit Intensity
    Walecki, Robert
    Rudovic, Ognjen
    Pavlovic, Vladimir
    Pantic, Maja
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 4902 - 4910
  • [10] Multi-output regression on the output manifold
    Liu, Guangcan
    Lin, Zhouchen
    Yu, Yong
    [J]. PATTERN RECOGNITION, 2009, 42 (11) : 2737 - 2743