Uniqueness of non-Gaussian subspace analysis

被引:0
|
作者
Theis, FJ [1 ]
Kawanabe, M
机构
[1] Univ Regensburg, Inst Biophys, D-93040 Regensburg, Germany
[2] Fraunhofer FIRST IDA, D-12439 Berlin, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dimension reduction provides an important tool for preprocessing large scale data sets. A possible model for dimension reduction is realized by projecting onto the non-Gaussian part of a given multivariate recording. We prove that the subspaces of such a projection are unique given that the Gaussian subspace is of maximal dimension. This result therefore guarantees that projection algorithms uniquely recover the underlying lower dimensional data signals.
引用
收藏
页码:917 / 925
页数:9
相关论文
共 50 条
  • [1] Robust Gaussian and non-Gaussian matched subspace detection
    Desai, MN
    Mangoubi, RS
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (12) : 3115 - 3127
  • [2] Robust subspace estimation in non-Gaussian noise
    Kozick, RJ
    Sadler, BM
    [J]. 2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 3818 - 3821
  • [3] The Uniqueness Problem of Non-Gaussian Linear Processes
    程乾生
    [J]. 数学进展, 1991, (04) : 499 - 500
  • [4] SVM Based on Gaussian and Non-Gaussian Double Subspace for Fault Detection
    Guo, Jinyu
    Li, Tao
    Li, Yuan
    [J]. IEEE ACCESS, 2021, 9 : 66519 - 66530
  • [5] Suppression of non-Gaussian clutter from subspace interference
    Zou K.
    Lai L.
    Luo Y.
    Li W.
    [J]. Journal of Radars, 2020, 9 (04): : 715 - 721
  • [6] Asymptotic and Bootstrap Tests for the Dimension of the Non-Gaussian Subspace
    Nordhausen, Klaus
    Oja, Hannu
    Tyler, David E.
    Virta, Joni
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (06) : 887 - 891
  • [7] Noise subspace techniques in non-Gaussian noise using cumulants
    Army Research Lab, Adelphi, United States
    [J]. IEEE Trans Aerosp Electron Syst, 3 (1009-1018):
  • [8] NOISE SUBSPACE TECHNIQUES IN NON-GAUSSIAN NOISE USING CUMULANTS
    SADLER, BM
    GIANNAKIS, GB
    SHAMSUNDER, S
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1995, 31 (03) : 1009 - 1018
  • [9] Model-based subspace clustering of non-Gaussian data
    Boutemedjet, Sabri
    Ziou, Djemel
    Bouguila, Nizar
    [J]. NEUROCOMPUTING, 2010, 73 (10-12) : 1730 - 1739
  • [10] Bayesian Robust Signal Subspace Estimation in Non-Gaussian Environment
    Ben Abdallah, R.
    Breloy, A.
    El Korso, M. N.
    Lautru, D.
    [J]. 2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,