Rings as the Unions of Proper Subrings

被引:15
|
作者
Lucchini, Andrea [1 ]
Maroti, Attila [1 ]
机构
[1] Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
关键词
Finite ring; Covering;
D O I
10.1007/s10468-011-9277-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe all possible ways how a ring can be expressed as the union of three of its proper subrings. This is an analogue for rings of a 1926 theorem of Scorza about groups.
引用
收藏
页码:1035 / 1047
页数:13
相关论文
共 50 条
  • [1] Rings as the Unions of Proper Subrings
    Andrea Lucchini
    Attila Maróti
    Algebras and Representation Theory, 2012, 15 : 1035 - 1047
  • [2] INFINITE RINGS WITH ALL PROPER SUBRINGS FINITE
    LAFFEY, TJ
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (03): : 270 - 272
  • [3] RINGS WHOSE PROPER SUBRINGS HAVE PROPERTY P
    GILMER, R
    OMALLEY, M
    LEA, R
    ACTA SCIENTIARUM MATHEMATICARUM, 1972, 33 (1-2): : 69 - &
  • [4] On Unital Covers of Commutative Rings of Small Orders by Proper Subrings
    Mohammadlou, K.
    Esmkhani, M. A.
    Amiri, S. M. Jafarian
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (08)
  • [5] NON-NOETHERIAN RINGS WHOSE PROPER SUBRINGS ARE NOETHERIAN
    GILMER, R
    OMALLEY, M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (06): : 932 - &
  • [6] Quasinormal Subgroups in Division Rings Radical over Proper Division Subrings
    Danh, Le Qui
    Deo, Trinh Thanh
    KYUNGPOOK MATHEMATICAL JOURNAL, 2023, 63 (02): : 187 - 198
  • [7] BEZOUT RINGS AND THEIR SUBRINGS
    COHN, PM
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1968, 64 : 251 - &
  • [8] SUBRINGS OF NOETHERIAN RINGS
    FORMANEK, E
    JATEGAONKAR, AV
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 46 (02) : 181 - 186
  • [9] RADICALS OF RINGS AND THEIR SUBRINGS
    PUCZYLOWSKI, ER
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1981, 24 (OCT) : 209 - 215
  • [10] ON SUBRINGS OF FREE RINGS
    KRYAZHOVSKIKH, GV
    KUKIN, GP
    SIBERIAN MATHEMATICAL JOURNAL, 1989, 30 (06) : 903 - 914