Constraining 3-PG with a new δ13C submodel: a test using the δ13C of tree rings

被引:24
|
作者
Wei, Liang [1 ]
Marshall, John D. [1 ,2 ]
Link, Timothy E. [1 ]
Kavanagh, Kathleen L. [1 ]
Du, Enhao [3 ]
Pangle, Robert E. [4 ]
Gag, Peter J. [5 ]
Ubierna, Nerea [6 ]
机构
[1] Univ Idaho, Dept Forest Rangeland & Fire Sci, Moscow, ID 83844 USA
[2] Swedish Agr Univ, Dept Forest Ecol & Management, S-90183 Umea, Sweden
[3] Lawrence Berkeley Natl Lab, Div Earth Sci, Climate Sci Dept, Berkeley, CA 94720 USA
[4] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA
[5] USDA Forest Serv, Pacific Southwest Res Stn, Reading, CA 96002 USA
[6] Australian Natl Univ, Res Sch Biol, Canberra, ACT 0200, Australia
来源
PLANT CELL AND ENVIRONMENT | 2014年 / 37卷 / 01期
基金
美国国家科学基金会;
关键词
grand fir; litterfall; model tuning; quantum yield; radiation-use efficiency; sap flux; stable carbon isotope ratio; CARBON-ISOTOPE COMPOSITION; LEAF-AREA INDEX; OF-THE-ART; FOREST GROWTH; DOUGLAS-FIR; STOMATAL CONDUCTANCE; ORGANIC-MATTER; USE EFFICIENCY; PROCESS MODEL; GRAND FIR;
D O I
10.1111/pce.12133
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
A semi-mechanistic forest growth model, 3-PG (Physiological Principles Predicting Growth), was extended to calculate C-13 in tree rings. The C-13 estimates were based on the model's existing description of carbon assimilation and canopy conductance. The model was tested in two approximate to 80-year-old natural stands of Abies grandis (grand fir) in northern Idaho. We used as many independent measurements as possible to parameterize the model. Measured parameters included quantum yield, specific leaf area, soil water content and litterfall rate. Predictions were compared with measurements of transpiration by sap flux, stem biomass, tree diameter growth, leaf area index and C-13. Sensitivity analysis showed that the model's predictions of C-13 were sensitive to key parameters controlling carbon assimilation and canopy conductance, which would have allowed it to fail had the model been parameterized or programmed incorrectly. Instead, the simulated C-13 of tree rings was no different from measurements (P>0.05). The C-13 submodel provides a convenient means of constraining parameter space and avoiding model artefacts. This C-13 test may be applied to any forest growth model that includes realistic simulations of carbon assimilation and transpiration.
引用
收藏
页码:82 / 100
页数:19
相关论文
共 50 条
  • [1] Modeling 13C discrimination in tree rings
    Berninger, F
    Sonninen, E
    Aalto, T
    Lloyd, J
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2000, 14 (01) : 213 - 223
  • [2] ANGULAR DISTRIBUTIONS FOR 13C(K~-,π~-)Λ13C REACTIONS
    李扬国
    姜焕清
    王潍潍
    [J]. Science Bulletin, 1983, (04) : 460 - 464
  • [3] 13C urea breath test
    Thomas, JE
    [J]. GUT, 1998, 43 : S7 - S8
  • [4] Comparison of [13C]urea blood test to [13C]urea breath test for the diagnosis of Helicobacter pylori
    Cutler, AF
    Toskes, P
    [J]. AMERICAN JOURNAL OF GASTROENTEROLOGY, 1999, 94 (04): : 959 - 961
  • [5] Automated prediction of 15N, 13Cα, 13Cβ and 13C′ chemical shifts in proteins using a density functional database
    Xu, XP
    Case, DA
    [J]. JOURNAL OF BIOMOLECULAR NMR, 2001, 21 (04) : 321 - 333
  • [6] Automated prediction of 15N, 13Cα, 13Cβ and 13C′ chemical shifts in proteins using a density functional database
    Xiao-Ping Xu
    David A. Case
    [J]. Journal of Biomolecular NMR, 2001, 21 : 321 - 333
  • [7] 13C(K~-,π~-)∧13C反应的角分布
    李扬国
    姜焕清
    王潍潍
    [J]. 科学通报, 1982, (13) : 776 - 779
  • [8] The cluster and single -particle states in 13C (α,α)13C reactions
    Mynbayev, N. A.
    Nurmukhanbetova, A. K.
    Goldberg, V. Z.
    Rogachev, G. V.
    Golovkov, M. S.
    Koloberdin, M.
    Ivanov, I.
    Nauruzbayev, D. K.
    Berdibek, Sh S.
    Rakhymzhanov, A. M.
    Tribble, R. E.
    [J]. XXI INTERNATIONAL SCHOOL ON NUCLEAR PHYSICS, NEUTRON PHYSICS AND APPLICATIONS & INTERNATIONAL SYMPOSIUM ON EXOTIC NUCLEI (ISEN-2015), 2016, 724
  • [9] Microwave-supported preparation of α-cellulose for analysis of δ13C in tree rings
    Haupt, Marika
    Boettger, Tatjana
    [J]. ANALYTICAL CHEMISTRY, 2006, 78 (20) : 7248 - 7252