A unified a posteriori error estimator for finite volume methods for the stokes equations

被引:9
|
作者
Wang, Junping [1 ]
Wang, Yanqiu [2 ]
Ye, Xiu [3 ]
机构
[1] Natl Sci Fdn, Div Math Sci, 4201 Wilson Blvd, Arlington, VA 22230 USA
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74075 USA
[3] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
基金
美国国家科学基金会;
关键词
a posteriori error estimate; finite volume methods; finite element methods; Stokes equations; ELLIPTIC PROBLEMS; ELEMENT METHOD; DIFFUSION-EQUATIONS; COVOLUME METHOD; APPROXIMATIONS; FRAMEWORK; ACCURACY;
D O I
10.1002/mma.2871
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors established a unified framework for deriving and analyzing a posteriori error estimators for finite volume methods for the Stokes equations. The a posteriori error estimators are residual based and are applicable to various finite volume methods for the Stokes equations. In particular, the unified theoretical analysis works well for finite volume schemes arising from using trial functions of conforming, nonconforming, and discontinuous finite element functions, yielding new results that are not seen in the existing literature. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:866 / 880
页数:15
相关论文
共 50 条
  • [1] UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS
    Wang, Junping
    Wang, Yanqiu
    Ye, Xiu
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (03) : 551 - 570
  • [2] A posteriori error estimator for finite volume methods
    Agouzal, A
    Oudin, F
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 110 (2-3) : 239 - 250
  • [3] A posteriori error estimates of stabilized finite volume method for the Stokes equations
    Zhang, Tong
    Mu, Lin
    Yuan, JinYun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (01) : 32 - 43
  • [4] UNIFIED ANALYSIS OF FINITE VOLUME METHODS FOR THE STOKES EQUATIONS
    Cui, Ming
    Ye, Xiu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (03) : 824 - 839
  • [5] On a multiscale a posteriori error estimator for the Stokes and Brinkman equations
    Araya, Rodolfo
    Rebolledo, Ramiro
    Valentin, Frederic
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (01) : 344 - 380
  • [6] A POSTERIORI ERROR ESTIMATE FOR STABILIZED FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS
    Wang, Junping
    Wang, Yanqiu
    Ye, Xiu
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2012, 9 (01) : 1 - 16
  • [7] AN A POSTERIORI ERROR ESTIMATION FOR THE DISCRETE DUALITY FINITE VOLUME DISCRETIZATION OF THE STOKES EQUATIONS
    Le, Anh Ha
    Omnes, Pascal
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (03): : 663 - 693
  • [8] An a posteriori finite element error analysis for the Stokes equations
    Jou, J
    Liu, JL
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 114 (02) : 333 - 343
  • [9] An a posteriori error estimator for a LPS method for Navier-Stokes equations
    Araya, Rodolfo
    Rebolledo, Ramiro
    APPLIED NUMERICAL MATHEMATICS, 2018, 127 : 179 - 195
  • [10] Analysis of an a posteriori error estimator for a variational inequality governed by the Stokes equations
    Jing, Feifei
    Han, Weimin
    Zhang, Yongchao
    Yan, Wenjing
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372