Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp PCC 7002

被引:60
|
作者
Kopka, Joachim [1 ]
Schmidt, Stefanie [1 ]
Dethloff, Frederik [1 ,2 ]
Pade, Nadin [3 ]
Berendt, Susanne [4 ]
Schottkowski, Marco [4 ]
Martin, Nico [4 ]
Duehring, Ulf [4 ]
Kuchmina, Ekaterina [5 ]
Enke, Heike [4 ,6 ]
Kramer, Dan [4 ,6 ]
Wilde, Annegret [5 ]
Hagemann, Martin [3 ]
Friedrich, Alexandra [4 ]
机构
[1] Max Planck Inst Mol Plant Physiol, Muhlenberg 1, D-14476 Potsdam, Germany
[2] Max Planck Inst Psychiat, Kraepelinstr 2-10, D-80804 Munich, Germany
[3] Univ Rostock, Inst Biol Sci, Plant Physiol, Albert Einstein Str 3, D-18059 Rostock, Germany
[4] Algenol Biofuels Germany GmbH, Magnusstr 11, D-12489 Berlin, Germany
[5] Univ Freiburg, Inst Biol 3, Schanzlestr 1, D-79104 Freiburg, Germany
[6] Cyano Biotech GmbH, Magnusstr 11, D-12489 Berlin, Germany
来源
关键词
Synechococcus sp PCC 7002; Carbon assimilation; Carbon partitioning; Cyanobacteria; Ethanol; Glycolysis; Metabolomics; Proteomics; Pyruvate; INORGANIC CARBON LIMITATION; TRICARBOXYLIC-ACID CYCLE; PHOTORESPIRATORY MUTANTS; GAS-CHROMATOGRAPHY; STRESS-RESPONSE; LACTIC ACID; HIGH-LIGHT; WILD-TYPE; STRAIN; ACCLIMATION;
D O I
10.1186/s13068-017-0741-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Future sustainable energy production can be achieved using mass cultures of photoautotrophic microorganisms, which are engineered to synthesize valuable products directly from CO2 and sunlight. As cyanobacteria can be cultivated in large scale on non-arable land, these phototrophic bacteria have become attractive organisms for production of biofuels. Synechococcus sp. PCC 7002, one of the cyanobacterial model organisms, provides many attractive properties for biofuel production such as tolerance of seawater and high light intensities. Results: Here, we performed a systems analysis of an engineered ethanol-producing strain of the cyanobacterium Synechococcus sp. PCC 7002, which was grown in artificial seawater medium over 30 days applying a 12: 12 h daynight cycle. Biosynthesis of ethanol resulted in a final accumulation of 0.25% ( v/v) ethanol, including ethanol lost due to evaporation. The cultivation experiment revealed three production phases. The highest production rate was observed in the initial phase when cells were actively growing. In phase II growth of the producer strain stopped, but ethanol production rate was still high. Phase III was characterized by a decrease of both ethanol production and optical density of the culture. Metabolomics revealed that the carbon drain due to ethanol diffusion from the cell resulted in the expected reduction of pyruvate-based intermediates. Carbon- saving strategies successfully compensated the decrease of central intermediates of carbon metabolism during the first phase of fermentation. However, during longter methanol production the producer strain showed clear indications of intracellular carbon limitation. Despite the decreased levels of glycolytic and tricarboxylic acid cycle intermediates, soluble sugars and even glycogen accumulated in the producer strain. The changes in carbon assimilation patterns are partly supported by proteome analysis, which detected decreased levels of many enzymes and also revealed the stress phenotype of ethanol-producing cells. Strategies towards improved ethanol production are discussed. Conclusions: Systems analysis of ethanol production in Synechococcus sp. PCC 7002 revealed initial compensation followed by increasing metabolic limitation due to excessive carbon drain from primary metabolism.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002
    Joachim Kopka
    Stefanie Schmidt
    Frederik Dethloff
    Nadin Pade
    Susanne Berendt
    Marco Schottkowski
    Nico Martin
    Ulf Dühring
    Ekaterina Kuchmina
    Heike Enke
    Dan Kramer
    Annegret Wilde
    Martin Hagemann
    Alexandra Friedrich
    Biotechnology for Biofuels, 10
  • [2] Modular growth vessels for the cultivation of the cyanobacterium Synechococcus sp PCC 7002
    Jackson, Simon A.
    Eaton-Rye, Julian J.
    NEW ZEALAND JOURNAL OF BOTANY, 2017, 55 (01) : 14 - 24
  • [3] Optogenetic control of gene expression in the cyanobacterium Synechococcus sp. PCC 7002
    Forbes, Liam
    Papanatsiou, Maria
    Palombo, Anna
    Christie, John M.
    Amtmann, Anna
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2025, 12
  • [4] Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp PCC 7002
    Ito, Y
    Butler, A
    LIMNOLOGY AND OCEANOGRAPHY, 2005, 50 (06) : 1918 - 1923
  • [5] Effects of Modified Phycobilin Biosynthesis in the Cyanobacterium Synechococcus sp Strain PCC 7002
    Alvey, Richard M.
    Biswas, Avijit
    Schluchter, Wendy M.
    Bryant, Donald A.
    JOURNAL OF BACTERIOLOGY, 2011, 193 (07) : 1663 - 1671
  • [6] CyanOmics: an integrated database of omics for the model cyanobacterium Synechococcus sp PCC 7002
    Yang, Yaohua
    Feng, Jie
    Li, Tao
    Ge, Feng
    Zhao, Jindong
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2015,
  • [7] Extracellular degradation of phenol by the cyanobacterium Synechococcus PCC 7002
    M. Wurster
    S. Mundt
    E. Hammer
    F. Schauer
    U. Lindequist
    Journal of Applied Phycology, 2003, 15 : 171 - 176
  • [8] Extracellular degradation of phenol by the cyanobacterium Synechococcus PCC 7002
    Wurster, M
    Mundt, S
    Hammer, E
    Schauer, F
    Lindequist, U
    JOURNAL OF APPLIED PHYCOLOGY, 2003, 15 (2-3) : 171 - 176
  • [9] Photosynthetic conversion of CO2 to hyaluronic acid by engineered strains of the cyanobacterium Synechococcus sp. PCC 7002
    Zhang, Lifang
    Selao, Tiago Toscano
    Nixon, Peter J.
    Norling, Birgitta
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2019, 44
  • [10] Methylglyoxal detoxification by an aldo-keto reductase in the cyanobacterium Synechococcus sp PCC 7002
    Xu, Dongyi
    Liu, Xianwei
    Guo, Cong
    Zhao, Jindong
    MICROBIOLOGY-SGM, 2006, 152 : 2013 - 2021