EXPONENTIAL SYNCHRONIZATION OF FINITE-DIMENSIONAL KURAMOTO MODEL AT CRITICAL COUPLING STRENGTH

被引:0
|
作者
Choi, Young-Pil [1 ]
Ha, Seung-Yeal [1 ]
Kang, Myeongmin [1 ]
Kang, Myungjoo [1 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
Critical coupling strength; exponential synchronization; Kuramoto model; natural frequency; LOCKED STATE; OSCILLATORS; POPULATIONS; STABILITY; SPECTRUM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the exponential synchronization for an ensemble of Kuramoto oscillators at the critical coupling strength, which is the diameter of the set consisting of natural frequencies. When the number of distinct natural frequencies is greater than two and the initial phases are strictly confined in an interval of length pi/2, we show that the initial configuration evolves toward a phase-locked state at least exponentially fast. This fast convergence toward the phase-locked state is markedly different from an ensemble of Kuramoto oscillators with only two distinct natural frequencies. For this, we derive a Gronwall inequality for the frequency diameter to obtain complete synchronization. We also compare our analytical results with numerical simulation results.
引用
收藏
页码:385 / 401
页数:17
相关论文
共 50 条
  • [1] Dynamics of the finite-dimensional Kuramoto model: Global and cluster synchronization
    Belykh, Vladimir N.
    Petrov, Valentin S.
    Osipov, Grigory V.
    REGULAR & CHAOTIC DYNAMICS, 2015, 20 (01): : 37 - 48
  • [2] Dynamics of the finite-dimensional Kuramoto model: Global and cluster synchronization
    Vladimir N. Belykh
    Valentin S. Petrov
    Grigory V. Osipov
    Regular and Chaotic Dynamics, 2015, 20 : 37 - 48
  • [3] Mechanism of desynchronization in the finite-dimensional Kuramoto model
    Maistrenko, Y
    Popovych, O
    Burylko, O
    Tass, PA
    PHYSICAL REVIEW LETTERS, 2004, 93 (08) : 084102 - 1
  • [4] Exponential synchronization for nonidentical high-dimensional Kuramoto model
    Wei, Xinmiao
    Peng, Shanshan
    Zhu, Jiandong
    SYSTEMS & CONTROL LETTERS, 2023, 177
  • [5] EXPONENTIAL SYNCHRONIZATION OF KURAMOTO OSCILLATORS WITH TIME DELAYED COUPLING
    Choi, Young-Pil
    Pignotti, Cristina
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (05) : 1429 - 1445
  • [6] A fast algorithm to calculate the critical coupling strength for synchronization in a chain of Kuramoto oscillators
    Zhang, Lin
    Wu, Ye
    Shi, Xia
    He, Zuguo
    Xiao, Jinghua
    NONLINEAR DYNAMICS, 2014, 77 (1-2) : 99 - 105
  • [7] A fast algorithm to calculate the critical coupling strength for synchronization in a chain of Kuramoto oscillators
    Lin Zhang
    Ye Wu
    Xia Shi
    Zuguo He
    Jinghua Xiao
    Nonlinear Dynamics, 2014, 77 : 99 - 105
  • [8] Exponential synchronization of the Kuramoto model with star topology
    Zhang, Wenyi
    Huang, Shaowei
    Mei, Shengwei
    Guan, Zhi-Hong
    Zhang, Xuemin
    Chi, Ming
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 10047 - 10050
  • [9] On the Critical Coupling Strength for Kuramoto Oscillators
    Doerfler, Florian
    Bullo, Francesco
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3239 - 3244
  • [10] Numerical Solution of Finite Kuramoto Model with Time-Dependent Coupling Strength: Addressing Synchronization Events of Nature
    Khatiwada, Dharma Raj
    MATHEMATICS, 2022, 10 (19)