Accurate, data-efficient, unconstrained text recognition with convolutional neural networks

被引:58
|
作者
Yousef, Mohamed [1 ]
Hussain, Khaled F. [1 ]
Mohammed, Usama S. [2 ]
机构
[1] Assiut Univ, Fac Comp & Informat, Comp Sci Dept, Asyut 71515, Egypt
[2] Assiut Univ, Elect Engn Dept, Fac Engn, Asyut 71515, Egypt
关键词
Text recognition; Optical character recognition; Handwriting recognition; CAPTCHA Solving; License plate recognition; Convolutional neural network; Deep learning; SCENE TEXT; LSTM;
D O I
10.1016/j.patcog.2020.107482
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unconstrained text recognition is an important computer vision task, featuring a wide variety of different sub-tasks, each with its own set of challenges. One of the biggest promises of deep neural networks has been the convergence and automation of feature extractors from input raw signals, allowing for the highest possible performance with minimum required domain knowledge. To this end, we propose a data-efficient, end-to-end neural network model for generic, unconstrained text recognition. In our proposed architecture we strive for simplicity and efficiency without sacrificing recognition accuracy. Our proposed architecture is a fully convolutional network without any recurrent connections trained with the CTC loss function. Thus it operates on arbitrary input sizes and produces strings of arbitrary length in a very efficient and parallelizable manner. We show the generality and superiority of our proposed text recognition architecture by achieving state-of-the-art results on seven public benchmark datasets, covering a wide spectrum of text recognition tasks, namely: Handwriting Recognition, CAPTCHA recognition, OCR, License Plate Recognition, and Scene Text Recognition. Our proposed architecture has won the ICFHR2018 Competition on Automated Text Recognition on a READ Dataset. (C) 2020 Published by Elsevier Ltd.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [1] Transfer learning for data-efficient abdominal muscle segmentation with convolutional neural networks
    McSweeney, Donal M.
    Henderson, Edward G.
    van Herk, Marcel
    Weaver, Jamie
    Bromiley, Paul A.
    Green, Andrew
    McWilliam, Alan
    MEDICAL PHYSICS, 2022, 49 (05) : 3107 - 3120
  • [2] Data-Efficient Adaptive Global Pruning for Convolutional Neural Networks in Edge Computing
    Gao, Zhipeng
    Sun, Shan
    Mo, Zijia
    Rui, Lanlan
    Yang, Yang
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 6633 - 6638
  • [3] Data-Efficient Classification of Birdcall Through Convolutional Neural Networks Transfer Learning
    Efremova, Dina B.
    Sankupellay, Mangalam
    Konovalov, Dmitry A.
    2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2019, : 294 - 301
  • [4] Deep Convolutional Neural Networks for Unconstrained Ear Recognition
    Alshazly, Hammam
    Linse, Christoph
    Barth, Erhardt
    Martinetz, Thomas
    IEEE ACCESS, 2020, 8 (08): : 170295 - 170310
  • [5] Data-efficient Neural Text Compression with Interactive Learning
    Avinesh, P. V. S.
    Meyer, Christian M.
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 2543 - 2554
  • [6] Data-Efficient Augmentation for Training Neural Networks
    Liu, Tian Yu
    Mirzasoleiman, Baharan
    Advances in Neural Information Processing Systems, 2022, 35
  • [7] E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
    Batzner, Simon
    Musaelian, Albert
    Sun, Lixin
    Geiger, Mario
    Mailoa, Jonathan P.
    Kornbluth, Mordechai
    Molinari, Nicola
    Smidt, Tess E.
    Kozinsky, Boris
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [8] Data-Efficient Augmentation for Training Neural Networks
    Liu, Tian Yu
    Mirzasoleiman, Baharan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [9] E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
    Simon Batzner
    Albert Musaelian
    Lixin Sun
    Mario Geiger
    Jonathan P. Mailoa
    Mordechai Kornbluth
    Nicola Molinari
    Tess E. Smidt
    Boris Kozinsky
    Nature Communications, 13
  • [10] Intelligent Ultrasonic Systems for Material Texture Recognition using Data-Efficient Neural Networks
    Zhang, Xin
    Yu, Xinrui
    Saniie, Jafar
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,