Developing the Biome-BGC Model to Estimate Net Primary Productivity of Alpine Meadow on the Qinghai-Tibet Plateau

被引:2
|
作者
Sun Qingling [1 ]
Li Baolin [1 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China
关键词
Biome-BGC; net primary productivity (NPP); alpine meadow; Qinghai-Tibet Plateau; model development; CARBON; RESTORATION; ECOSYSTEMS; GRASSLANDS; SIMULATION; TURNOVER; CLIMATE; BALANCE; WATER;
D O I
10.1109/ICISCE.2016.81
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Numerical models are the most convenient instruments to estimate net primary productivity (NPP) of terrestrial vegetation. Process-based Biome-BGC model has been widely used to simulate the storage and flux of water, carbon, and nitrogen within the vegetation, litter, and soil of terrestrial ecosystems. Some researchers used Biome-BGC directly to estimate NPP of the alpine meadow on the Qinghai-Tibet Plateau without assessing its suitability mechanically. However, Biome-BGC has limited applicability to an alpine meadow mainly due to its inability of simulating the regeneration and litterfall processes specific to C-3 perennial deciduous grasses, which dominate the alpine meadow on the Qinghai-Tibet Plateau. Our aim was to improve applicability of Biome-BGC to the alpine meadow to accurately estimate its NPP by implementing model development. In this study, C-3 perennial deciduous grasses with leaves, non-woody stems, the underground fast-cycling portion, and the underground persistent portion were defined and modelled in the extended Biome-BGC model. Besides, eco-physiological parameters required by the model were also changed to adapt to the adjustment of model structure. After these modifications, the extended Biome-BGC model was validated with the measured NPP from the year of 2012 to 2014 collected at the Zhenqin Station, which is located in the central region of Qinghai-Tibet Plateau. Results showed that, NPP estimates using the extended model are much closer to the measured NPP than those calculated by the original model. On average, model development decreases the relative error of NPP estimation by approximately 30% during the year of 2012-2014.
引用
收藏
页码:334 / 337
页数:4
相关论文
共 50 条
  • [1] An improved Biome-BGC model for estimating net primary productivity of alpine meadow on the Qinghai-Tibet Plateau
    Sun, Qingling
    Li, Baolin
    Zhang, Tao
    Yuan, Yecheng
    Gao, Xizhang
    Ge, Jinsong
    Li, Fei
    Zhang, Zhijun
    ECOLOGICAL MODELLING, 2017, 350 : 55 - 68
  • [2] Nitrogen controls the net primary production of an alpine Kobresia meadow in the northern Qinghai-Tibet Plateau
    Dai, Licong
    Ke, Xun
    Du, Yangong
    Zhang, Fawei
    Li, Yikang
    Li, Qian
    Lin, Li
    Peng, Cuoji
    Shu, Kai
    Cao, Guangmin
    Guo, Xiaowei
    ECOLOGY AND EVOLUTION, 2019, 9 (15): : 8865 - 8875
  • [3] Improved Modeling of Gross Primary Productivity of Alpine Grasslands on the Tibetan Plateau Using the Biome-BGC Model
    You, Yongfa
    Wang, Siyuan
    Ma, Yuanxu
    Wang, Xiaoyue
    Liu, Weihua
    REMOTE SENSING, 2019, 11 (11)
  • [4] Dataset of the net primary production on the Qinghai-Tibetan Plateau using a soil water content improved Biome-BGC model
    Li, Chuanhua
    Sun, Hao
    Wu, Xiaodong
    Han, Haiyan
    DATA IN BRIEF, 2019, 27
  • [5] UAV Monitoring Topsoil Moisture in an Alpine Meadow on the Qinghai-Tibet Plateau
    Sang, Yazhuan
    Yu, Shangzhao
    Lu, Fengshuai
    Sun, Yi
    Wang, Shulin
    Ade, Luji
    Hou, Fujiang
    AGRONOMY-BASEL, 2023, 13 (09):
  • [6] Effect of permafrost degradation on grassland net primary productivity in Qinghai-Tibet Plateau
    Hu, Jianan
    Nan, Zhuotong
    Ji, Hailong
    Zhao, Shuping
    Ou, Minyue
    ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (10):
  • [7] An approach for improving soil water content for modeling net primary production on the Qinghai-Tibetan Plateau using Biome-BGC model
    Li, Chuanhua
    Sun, Hao
    Wu, Xiaodong
    Han, Haiyan
    CATENA, 2020, 184
  • [8] SIMULATION OF THE NET PRIMARY PRODUCTIVITY OF THE WETLAND PLANT Calamagrostis angustifolia BASED ON BIOME-BGC MODEL
    Liu, Xia
    Wang, Yiyong
    Zhou, Qinqian
    FRESENIUS ENVIRONMENTAL BULLETIN, 2015, 24 (08): : 2452 - 2459
  • [9] Relative pollen productivity estimates for alpine meadow in the Qinghai-Tibet Plateau and their potential significance for paleovegetation reconstruction
    Li, Dehui
    Xu, Qinghai
    Li, Yiwen
    Li, Yuecong
    Zhang, Ruchun
    Yang, Xiaolan
    Wei, Haicheng
    Li, Xinling
    QUATERNARY INTERNATIONAL, 2022, 641 : 115 - 121
  • [10] A model for root water uptake of alpine meadow on the Qinghai-Tibet Plateau considering soil temperature
    Guo, Yanchen
    Zhang, Zhihong
    Dai, Fuchu
    RHIZOSPHERE, 2024, 31