Rotationally invariant hashing of median binary patterns for texture classification

被引:0
|
作者
Hafiane, Adel [1 ]
Seetharaman, Guna [2 ]
Palaniappan, Kannappan [1 ]
Zavidovique, Bertrand [3 ]
机构
[1] Univ Missouri, Dept Comp Sci, Columbia, MO 65211 USA
[2] US Air Force, Inst Technol, Dept Elect & Comp Engn, Wright Patterson AFB, OH 45433 USA
[3] Univ Paris Sud, Inst Elect Fondamentale, F-91405 Orsay, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel image feature descriptor for rotationally invariant 2D texture classification. This extends our previous work on noise-resistant and intensity-shift invariant median binary patterns (MBPs), which use binary pattern vectors based on adaptive median thresholding. In this paper the MBPs are hashed to a binary chain or equivalence class using a circular bit-shift operator. One binary pattern vector (ie. smallest in value) from the group is selected to represent the equivalence class. The resolution and rotation invariant MBP (MBP ROT) texture descriptor is the distribution of these representative binary patterns in the image at one or more scales. A special subset of these rotation and scale invariant representative binary patterns termed uniform patterns leads to a more compact and robust MBP descriptor (MBP UNIF) that outperforms the rotation invariant uniform local binary patterns (LBP UNIF). We quantitatively compare and demonstrate the advantage of the new MBP texture descriptors for classification using the Brodatz and Outex texture dictionaries.
引用
收藏
页码:619 / +
页数:2
相关论文
共 50 条
  • [1] Adaptive Median Binary Patterns for Texture Classification
    Hafiane, Adel
    Palaniappan, Kannappan
    Seetharaman, Guna
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1138 - 1143
  • [2] Joint Adaptive Median Binary Patterns for texture classification
    Hafiane, Adel
    Palaniappan, Kannappan
    Seetharaman, Guna
    [J]. PATTERN RECOGNITION, 2015, 48 (08) : 2609 - 2620
  • [3] Statistical binary patterns for rotational invariant texture classification
    Thanh Phuong Nguyen
    Ngoc-Son Vu
    Manzanera, Antoine
    [J]. NEUROCOMPUTING, 2016, 173 : 1565 - 1577
  • [4] Gray scale and rotation invariant texture classification with local binary patterns
    Ojala, T
    Pietikäinen, M
    Mäenpää, T
    [J]. COMPUTER VISION - ECCV 2000, PT I, PROCEEDINGS, 2000, 1842 : 404 - 420
  • [5] Multi-ring local binary patterns for rotation invariant texture classification
    Yonggang He
    Nong Sang
    [J]. Neural Computing and Applications, 2013, 22 : 793 - 802
  • [6] Multi-ring local binary patterns for rotation invariant texture classification
    He, Yonggang
    Sang, Nong
    [J]. NEURAL COMPUTING & APPLICATIONS, 2013, 22 (3-4): : 793 - 802
  • [7] CFA local binary patterns for fast illuminant-invariant color texture classification
    Olivier Losson
    Ludovic Macaire
    [J]. Journal of Real-Time Image Processing, 2015, 10 : 387 - 401
  • [8] CFA local binary patterns for fast illuminant-invariant color texture classification
    Losson, Olivier
    Macaire, Ludovic
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2015, 10 (02) : 387 - 401
  • [9] Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    Ojala, T
    Pietikäinen, M
    Mäenpää, T
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (07) : 971 - 987
  • [10] Rotationally invariant texture based features
    Hill, PR
    Canagarajah, CN
    Bull, DR
    [J]. 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2001, : 141 - 144