Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data

被引:16
|
作者
Ziane, Y. [1 ]
Adjabi, S. [1 ]
Zougab, N. [1 ]
机构
[1] Univ Bejaia, LAMOS Lab, Bejaia, Algeria
关键词
62G99; 62G07; cross validation; BSPE kernel; bandwidth; prior distribution; loss functions; HT data; CHOICE;
D O I
10.1080/02664763.2015.1004626
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider an interesting problem on adaptive Birnbaum-Saunders-power-exponential (BS-PE) kernel density estimation for nonnegative heavy-tailed (HT) data. Treating the variable bandwidths , of adaptive BS-PE kernel as parameters, we then propose a conjugate prior and estimate the 's by using the popular quadratic and entropy loss functions. Explicit formulas are obtained for the posterior and Bayes estimators. Comparison simulations with global unbiased cross-validation bandwidth selection technique were conducted under four HT distributions. Finally, two applications based on HT real data are presented and analyzed.
引用
收藏
页码:1645 / 1658
页数:14
相关论文
共 50 条
  • [1] Body tail adaptive kernel density estimation for nonnegative heavy-tailed data
    Ziane, Yasmina
    Zougab, Nabil
    Adjabi, Small
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2021, 27 (01): : 57 - 69
  • [2] Birnbaum–Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data
    Yasmina Ziane
    Nabil Zougab
    Smail Adjabi
    [J]. Computational Statistics, 2018, 33 : 299 - 318
  • [3] Birnbaum-Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data
    Ziane, Yasmina
    Zougab, Nabil
    Adjabi, Smail
    [J]. COMPUTATIONAL STATISTICS, 2018, 33 (01) : 299 - 318
  • [4] Heavy-Tailed Density Estimation
    Tokdar, Surya T.
    Jiang, Sheng
    Cunningham, Erika L.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (545) : 163 - 175
  • [5] Recursive asymmetric kernel density estimation for nonnegative data
    Kakizawa, Yoshihide
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2021, 33 (02) : 197 - 224
  • [6] Kernel density estimation for heavy-tailed distributions using the Champernowne transformation
    Buch-Larsen, T
    Nielsen, JP
    Guillén, M
    Bolancé, C
    [J]. STATISTICS, 2005, 39 (06) : 503 - 518
  • [7] Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation
    Zougab, Nabil
    Adjabi, Smail
    Kokonendji, Celestin C.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 75 : 28 - 38
  • [8] A Bayesian procedure for bandwidth selection in circular kernel density estimation
    Bedouhene, Kahina
    Zougab, Nabil
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2020, 26 (01): : 69 - 82
  • [9] A Bayesian approach to bandwidth selection for multivariate kernel density estimation
    Zhang, Xibin
    King, Maxwell L.
    Hyndman, Rob J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (11) : 3009 - 3031
  • [10] Estimation of Heavy-Tailed Clutter Density using Adaptive RBF Network
    Vondra, Bojan
    Bonefacic, Davor
    [J]. 2016 22ND INTERNATIONAL CONFERENCE ON APPLIED ELECTROMAGNETICS AND COMMUNICATIONS (ICECOM), 2016,