A minimaxity criterion in nonparametric regression based on large-deviations probabilities

被引:0
|
作者
Korostelev, A
机构
来源
ANNALS OF STATISTICS | 1996年 / 24卷 / 03期
关键词
nonparametric regression; Gaussian noise; large-deviations probabilities; minimax risk; exact asymptotics;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A large-deviations criterion is proposed for optimality of nonparametric regression estimators. The criterion is one of minimaxity of the large-deviations probabilities. We study the case where the underlying class of regression functions is either Lipschitz or Holder, and when the loss function involves estimation at a point or in supremum norm. Exact minimax asymptotics are found in the Gaussian case.
引用
收藏
页码:1075 / 1083
页数:9
相关论文
共 50 条