DIVERGENCE OF THE MOCK AND SCRAMBLED FOURIER SERIES ON FRACTAL MEASURES

被引:0
|
作者
Dutkay, Dorin Ervin [1 ]
Han, Deguang [1 ]
Sun, Qiyu [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
Fourier series; Dirichlet kernel; Hilbert space; fractal; selfsimilar; iterated function system; Hadamard matrix; ITERATED FUNCTION SYSTEMS; CANTOR MEASURES; CONVERGENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study divergence properties of the Fourier series on Cantor-type fractal measures, also called the mock Fourier series. We show that in some cases the L-1-norm of the corresponding Dirichlet kernel grows exponentially fast, and therefore the Fourier series are not even pointwise convergent. We apply these results to the Lebesgue measure to show that a certain rearrangement of the exponential functions, with affine structure, which we call a scrambled Fourier series, have a corresponding Dirichlet kernel whose L-1-norm grows exponentially fast, which is much worse than the known logarithmic bound. The divergence properties are related to the Mahler measure of certain polynomials and to spectral properties of Ruelle operators.
引用
收藏
页码:2191 / 2208
页数:18
相关论文
共 50 条
  • [1] Divergence of mock Fourier series for spectral measures
    Pan, Wu-yi
    Ai, Wen-hui
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (06) : 1818 - 1832
  • [2] Mock Fourier series and transforms associated with certain Cantor measures
    Robert S. Strichartz
    [J]. Journal d’Analyse Mathématique, 2000, 81 : 209 - 238
  • [3] Mock Fourier series and transforms associated with certain Cantor measures
    Strichartz, RS
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2000, 81 (1): : 209 - 238
  • [4] Convergence of mock Fourier series
    Strichartz, Robert S.
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2006, 99 (1): : 333 - 353
  • [5] Convergence of mock Fourier series
    Robert S. Strichartz
    [J]. Journal d’Analyse Mathématique, 2006, 99 : 333 - 353
  • [6] DIVERGENCE OF FOURIER SERIES
    ZHIZHIAS.LV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1970, 194 (04): : 758 - &
  • [7] DIVERGENCE OF FOURIER SERIES
    TAIKOV, LV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1961, 137 (04): : 782 - &
  • [8] FOURIER ASYMPTOTICS OF FRACTAL MEASURES
    STRICHARTZ, RS
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 89 (01) : 154 - 187
  • [9] DIVERGENCE OF FOURIER-SERIES
    OBERLIN, DM
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1983, 26 (03): : 328 - 330
  • [10] CONVERGENCE AND DIVERGENCE OF FOURIER SERIES
    ZHIZHIASHVILI, LV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1971, 199 (06): : 1234 - +