Finite block Petrov-Galerkin method in transient heat conduction

被引:14
|
作者
Li, M. [1 ]
Monjiza, A. [2 ]
Xu, Y. G. [3 ]
Wen, P. H. [2 ]
机构
[1] Taiyuan Univ Technol, Coll Math, Taiyuan, Peoples R China
[2] Univ London, Sch Engn & Mat Sci, London, England
[3] Univ Hertfordshire, Sch Engn & Technol, Hatfield AL10 9AB, Herts, England
基金
山西省青年科学基金;
关键词
Finite block Petrov-Galerkin method; Lagrange series expansion; Stationary and transient heat conduction; Anisotropic and functionally graded materials; INTEGRATION METHOD; STRESS WAVES; ELEMENT; APPROXIMATION; FORMULATION; MLPG;
D O I
10.1016/j.enganabound.2015.01.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on the two-dimensional Lagrange series interpolation, the formulation of the Finite Block Petrov-Galerkin (FBPG) in the weak form is presented in this paper. In this case, the first order of partial differentials are only needed in the weak form governing equations and in the Neumann boundary condition. By introducing the mapping technique, a block of quadratic type is transformed from the Cartesian coordinate (xoy) to the normalized coordinate (xi o eta) with 8 seeds. Time dependent partial differential equations are analyzed in the Laplace transformed domain and the Durbin's inversion method is used to determine all the physical values in the time domain. Illustrative numerical examples are given and comparisons have been made with either analytical solutions or other numerical solutions including meshless method and the Finite Element Method (ABAQUS). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 50 条
  • [1] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
    Wang Qi-Fang
    Dai Bao-Dong
    Li Zhen-Feng
    CHINESE PHYSICS B, 2013, 22 (08)
  • [2] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
    王启防
    戴保东
    栗振锋
    Chinese Physics B, 2013, 22 (08) : 242 - 248
  • [3] MESHLESS LOCAL PETROV-GALERKIN METHOD FOR NONLINEAR HEAT CONDUCTION PROBLEMS
    Thakur, Harishchandra
    Singh, K. M.
    Sahoo, P. K.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2009, 56 (05) : 393 - 410
  • [4] Inverse heat conduction problems by meshless local Petrov-Galerkin method
    Sladek, J.
    Sladek, V.
    Hon, Y. C.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2006, 30 (08) : 650 - 661
  • [5] Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method
    Dai, Baodong
    Zheng, Baojing
    Liang, Qingxiang
    Wang, Linghui
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (19) : 10044 - 10052
  • [6] Meshless local Petrov-Galerkin method for heat conduction problem in an anisotropic medium
    Sladek, J
    Sladek, V
    Atluri, SN
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2004, 6 (03): : 309 - 318
  • [7] Post buckling analysis for composite plate by finite block Petrov-Galerkin method
    Li, M. (lm13653600949@126.com), 1600, Elsevier Ltd (61):
  • [8] Post buckling analysis for composite plate by finite block Petrov-Galerkin method
    Li, M.
    Meng, L. X.
    Shi, C.
    Wen, P. H.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2017, 61 : 443 - 455
  • [9] Finite and infinite block Petrov-Galerkin method for cracks in functionally graded materials
    Li, Y.
    Li, J.
    Wen, P. H.
    APPLIED MATHEMATICAL MODELLING, 2019, 68 : 306 - 326
  • [10] Transient thermal conduction with variable conductivity using the Meshless Local Petrov-Galerkin method
    Karagiannakis, N. P.
    Bourantas, G. C.
    Kalarakis, A. N.
    Skouras, E. D.
    Burganos, V. N.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 676 - 686