CNN-Based Real-Time Parameter Tuning for Optimizing Denoising Filter Performance

被引:5
|
作者
Mukherjee, Subhayan [1 ]
Kottayil, Navaneeth Kamballur [1 ]
Sun, Xinyao [1 ]
Cheng, Irene [1 ]
机构
[1] Univ Alberta, Edmonton, AB T6G 2R3, Canada
关键词
Filter parameter tuning; CNN; Denoising; BM3D; GPU; IMAGE; SPARSE; REPRESENTATIONS; ALGORITHM;
D O I
10.1007/978-3-030-27202-9_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel direction to improve the denoising quality of filtering-based denoising algorithms in real time by predicting the best filter parameter value using a Convolutional Neural Network (CNN). We take the use case of BM3D, the state-of-the-art filtering-based denoising algorithm, to demonstrate and validate our approach. We propose and train a simple, shallow CNN to predict in real time, the optimum filter parameter value, given the input noisy image. Each training example consists of a noisy input image (training data) and the filter parameter value that produces the best output (training label). Both qualitative and quantitative results using the widely used PSNR and SSIM metrics on the popular BSD68 dataset show that the CNN-guided BM3D outperforms the original, unguided BM3D across different noise levels. Thus, our proposed method is a CNN-based improvement on the original BM3D which uses a fixed, default parameter value for all images.
引用
收藏
页码:112 / 125
页数:14
相关论文
共 50 条
  • [1] Real-time CNN-based Keypoint Detector with Sobel Filter and Descriptor Trained with Keypoint Candidates
    Hu, Ke
    Yuan, Xun
    Chen, Song
    [J]. FIFTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION, ICMV 2022, 2023, 12701
  • [2] CNN-based Fisheye Image Real-Time Semantic Segmentation
    Saez, Alvaro
    Bergasa, Luis M.
    Romera, Eduardo
    Lopez, Elena
    Barea, Rafael
    Sanz, Rafael
    [J]. 2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 1039 - 1044
  • [3] AUTOMATIC REAL-TIME CNN-BASED NEONATAL BRAIN VENTRICLES SEGMENTATION
    Wang, Puyang
    Cuccolo, Nick. G.
    Tyagi, Rachana
    Hacihaliloglu, Ilker
    Patel, Vishal M.
    [J]. 2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 716 - 719
  • [4] An Approach for CNN-Based Feature Matching Towards Real-Time SLAM
    Sons, Marc
    Kinzig, Christian
    Zanker, Dominic
    Stiller, Christoph
    [J]. 2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 1305 - 1310
  • [5] Real-Time CNN-Based Driver Distraction & Drowsiness Detection System
    Almazroi, Abdulwahab Ali
    Alqarni, Mohammed A.
    Aslam, Nida
    Shah, Rizwan Ali
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (02): : 2153 - 2174
  • [6] Real-Time, CNN-Based Assistive Device for Visually Impaired People
    Jouini, Khaled
    Maaloul, Mohamed Hedi
    Korbaa, Ouajdi
    [J]. 2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [7] CNN-BASED DENOISING OF TIME-OF-FLIGHT DEPTH IMAGES
    Bolsee, Quentin
    Munteanu, Adrian
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 510 - 514
  • [8] Development of a CNN-based real-time monitoring algorithm for additively manufactured molybdenum
    Kim, Eun-Su
    Lee, Dong-Hee
    Seo, Gi-Jeong
    Kim, Duck-Bong
    Shin, Seung-Jun
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2023, 352
  • [9] A CNN-based passive optical range finder for real-time robotic applications
    Giaquinto, N
    Savino, M
    Taraglio, S
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2002, 51 (02) : 314 - 319
  • [10] A Real-Time CNN-Based Lightweight Mobile Masked Face Recognition System
    Kocacinar, Busra
    Tas, Bilal
    Akbulut, Fatma Patlar
    Catal, Cagatay
    Mishra, Deepti
    [J]. IEEE ACCESS, 2022, 10 : 63496 - 63507