Comparison between the mortar element method and the polynomial interpolation method to model movement in the finite element method

被引:15
|
作者
Shi, Xiaodong [1 ]
Le Menach, Yvonnick [1 ]
Ducreux, Jean-Pierre [2 ]
Piriou, Francis [1 ]
机构
[1] Univ Sci & Technol Lille 1, L2EP, F-59655 Villeneuve Dascq, France
[2] Elect France, EDF R&D, F-92141 Clamart, France
关键词
electrical machines; finite-element method (FEM); scalar formulation;
D O I
10.1109/TMAG.2007.915840
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Numerous methods are developed to take into account the movement in electrical machines. In this paper, two methods are compared. The first one studies the mortar element method and the second is based on the polynomial interpolation. To solve the Maxwell equation, we used the scalar potential formulation. We will study the numerical behavior of the two methods and apply to a variable reluctance machine.
引用
收藏
页码:1314 / 1317
页数:4
相关论文
共 50 条
  • [1] Multigrid for the mortar finite element method
    Gopalakrishnan, J
    Pasciak, JE
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) : 1029 - 1052
  • [2] Over the mortar finite element method
    Raducanu, Razvan
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON SYSTEMS THEORY AND SCIENTIFIC COMPUTATION (ISTAC'08): NEW ASPECTS OF SYSTEMS THEORY AND SCIENTIFIC COMPUTATION, 2008, : 211 - +
  • [3] A mortar element method for coupling natural boundary element method and finite element method for unbounded domain problem
    Zhang, S
    Yu, DH
    RECENT ADVANCES IN ADAPTIVE COMPUTATION, PROCEEDINGS, 2005, 383 : 361 - 374
  • [4] The mortar finite element method for contact problems
    Belgacem, FB
    Hild, P
    Laborde, P
    MATHEMATICAL AND COMPUTER MODELLING, 1998, 28 (4-8) : 263 - 271
  • [5] The mortar finite element method for Bingham fluids
    Hild, P
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (01): : 153 - 164
  • [6] The Mortar finite element method with Lagrange multipliers
    Faker Ben Belgacem
    Numerische Mathematik, 1999, 84 : 173 - 197
  • [7] A multiscale mortar mixed finite element method
    Arbogast, Todd
    Pencheva, Gergina
    Wheeler, Mary F.
    Yotov, Ivan
    MULTISCALE MODELING & SIMULATION, 2007, 6 (01): : 319 - 346
  • [8] A multigrid algorithm for the mortar finite element method
    Braess, D
    Dahmen, W
    Wieners, C
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) : 48 - 69
  • [9] The Mortar finite element method with Lagrange multipliers
    Ben Belgacem, F
    NUMERISCHE MATHEMATIK, 1999, 84 (02) : 173 - 197
  • [10] A geometrical comparison between cell method and finite element method in electrostatics
    ECE Department, University of Manitoba, MB, Canada
    CMES Comput. Model. Eng. Sci., 2007, 1 (45-58):