Processing of magnetic scalar gradiometer signals using orthonormalized functions

被引:101
|
作者
Ginzburg, B
Frumkis, L
Kaplan, BZ
机构
[1] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel
[2] NRC, SOREQ, IL-81800 Yavne, Israel
关键词
gradiometer; magnetic anomaly detection; orthonormal basis;
D O I
10.1016/S0924-4247(02)00351-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work relates to the detection of hidden ferromagnetic objects with the use of a gradiometer that comprises two scalar sensors and functions as a magnetic anomaly detector (MAD). A hidden object is represented by a magnetostatic dipole. Modeling of the MAD output signal is carried out by its decomposition in the space of orthogonal functions (an orthonormal basis) constructed with the use of Gram-Schmidt algorithm. A set of five functions is found to be sufficient for an accurate signal description in a wide range of distances between the gradiometer and the dipole. The dipole energy signal is introduced in the basis chosen and is found to be a useful function for the data processing algorithm based upon the results of the modeling. It is shown that the use of this function improves either the signal-to-noise ratio or the detection characteristics. Moreover, the dipole energy signal turns out to be independent of the dipole orientation. This leads to the possibility of using an identical signal processing algorithm for all variety of dipole waveforms. (C) 2002 Elsevier Science B.V All rights reserved.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 50 条
  • [1] An efficient method for processing scalar magnetic gradiometer signals
    Ginzburg, B
    Frumkis, L
    Kaplan, BZ
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2004, 114 (01) : 73 - 79
  • [2] Optimization of scalar magnetic gradiometer signal processing
    Frumkis, L
    Ginzburg, B
    Salomonski, N
    Kaplan, BZ
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2005, 121 (01) : 88 - 94
  • [3] Inversion of Magnetic Dipole Parameters Using a Scalar Field Gradiometer
    Birsan, Marius
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (06) : 7434 - 7438
  • [4] Gradient signals analysis of scalar magnetic anomaly using orthonormal basis functions
    Fan, Liming
    Kang, Chong
    Hu, Hao
    Zhang, Xiaojun
    Liu, Jianguo
    Liu, Xing
    Wang, Huigang
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (11)
  • [5] POSSIBILITY OF USING OF ORTHONORMALIZED POLYNOMES IN MAGNETIC CHARTOGRAPHY
    KOLESOVA, VI
    [J]. GEOMAGNETIZM I AERONOMIYA, 1976, 16 (02): : 386 - 389
  • [6] Modeling and signals processing using cyclic random functions
    Lupenko, Serhii
    Oleksandra, Orobchuk
    Nataliya, Stadnik
    Andrii, Zozulya
    [J]. 2018 IEEE 13TH INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE ON COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES (CSIT), VOL 1, 2018, : 360 - 363
  • [7] Inversion of Target Magnetic Moments Based on Scalar Magnetic Anomaly Signals
    Zhang, Ke
    You, Xiuzhi
    Liu, Xiaodong
    Liu, Jiarui
    Zhu, Wanhua
    [J]. ELECTRONICS, 2023, 12 (24)
  • [8] Femtotesla Direct Magnetic Gradiometer Using a Single Multipass Cell
    Lucivero, V. G.
    Lee, W.
    Dural, N.
    Romalis, M., V
    [J]. PHYSICAL REVIEW APPLIED, 2021, 15 (01)
  • [9] Delineation of Egyptian mud bricks using magnetic gradiometer techniques
    El Emam, Ahmed
    Abdallatif, Tareq
    Suh, Mancheol
    Odah, Hatem
    [J]. ARABIAN JOURNAL OF GEOSCIENCES, 2014, 7 (02) : 489 - 503
  • [10] Delineation of Egyptian mud bricks using magnetic gradiometer techniques
    Ahmed El Emam
    Tareq Abdallatif
    Mancheol Suh
    Hatem Odah
    [J]. Arabian Journal of Geosciences, 2014, 7 : 489 - 503