HYPERBOLIC PERIODIC POINTS FOR CHAIN HYPERBOLIC HOMOCLINIC CLASSES

被引:8
|
作者
Sun, Wenxiang [1 ]
Yang, Yun [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Chain hyperbolicity; closing property; growth of periodic points; topological entropy; maximal entropy measures; AXIOM-A-DIFFEOMORPHISMS;
D O I
10.3934/dcds.2016.36.3911
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish a closing property and a hyperbolic closing property for thin trapped chain hyperbolic homoclinic classes with one dimensional center in partial hyperbolicity setting. Taking advantage of theses properties, we prove that the growth rate of the number of hyperbolic periodic points is equal to the topological entropy. We also obtain that the hyperbolic periodic measures are dense in the space of invariant measures.
引用
收藏
页码:3911 / 3925
页数:15
相关论文
共 50 条
  • [1] PERIODIC MEASURES AND PARTIALLY HYPERBOLIC HOMOCLINIC CLASSES
    Bonatti, Christian
    Zhang, Jinhua
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (02) : 755 - 802
  • [2] Periodic points and homoclinic classes
    Abdenur, F.
    Bonatti, Ch.
    Crovisier, S.
    Diaz, L. J.
    Wen, L.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 1 - 22
  • [3] ROBUSTLY EXPANSIVE HOMOCLINIC CLASSES ARE GENERICALLY HYPERBOLIC
    Sambarino, Martin
    Vieitez, Jose L.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (04) : 1325 - 1333
  • [4] Homoclinic classes for sectional-hyperbolic sets
    Arbieto, Alexander
    Lopez Barragan, Andres Mauricio
    Morales Rojas, Carlos Arnoldo
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2016, 56 (03) : 531 - 538
  • [5] Non-hyperbolic ergodic measures for non-hyperbolic homoclinic classes
    Diaz, Lorenzo J.
    Gorodetski, Anton
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 1479 - 1513
  • [6] NON-HYPERBOLIC ERGODIC MEASURES AND HORSESHOES IN PARTIALLY HYPERBOLIC HOMOCLINIC CLASSES
    Yang, Dawei
    Zhang, Jinhua
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2020, 19 (05) : 1765 - 1792
  • [7] On the intersection of homoclinic classes on singular-hyperbolic sets
    Bautista, S.
    Morales, C.
    Pacifico, M. J.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 19 (04) : 761 - 775
  • [8] Homoclinic orbits in families of hypersurfaces with hyperbolic periodic orbits
    Bernard, P
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 180 (02) : 427 - 452
  • [9] On hyperbolic points and periodic orbits of symplectomorphisms
    Batoreo, Marta
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 91 : 249 - 265
  • [10] R-robustly measure expansive homoclinic classes are hyperbolic
    Lee, Manseob
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2018, 18 (02): : 146 - 153