Hamiltonian cycles in T-graphs

被引:11
|
作者
Reay, JR [1 ]
Zamfirescu, T
机构
[1] Western Washington Univ, Dept Math, Bellingham, WA 98225 USA
[2] Univ Dortmund, Dept Math, D-46 Dortmund, Germany
关键词
D O I
10.1007/s004540010051
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
There is only one finite, 2-connected, linearly convex graph in the Archimedean Abstract. triangular tiling that does not have a Hamiltonian cycle.
引用
收藏
页码:497 / 502
页数:6
相关论文
共 50 条
  • [1] Hamiltonian Cycles in T-Graphs
    J. R. Reay
    T. Zamfirescu
    Discrete & Computational Geometry, 2000, 24 : 497 - 502
  • [2] CYCLES IN T-GRAPHS
    Reddy, L. Sreenivasulu
    Kumar, T. Mahesh
    Achari, B. Kumaraswamy
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (05): : 1137 - 1144
  • [3] NOT ALL GRAPHS ARE SEGMENT T-GRAPHS
    ALON, N
    KATCHALSKI, M
    SCHEINERMAN, ER
    EUROPEAN JOURNAL OF COMBINATORICS, 1990, 11 (01) : 7 - 13
  • [4] Coding of Knots by T-Graphs
    Biryukov O.N.
    Journal of Mathematical Sciences, 2022, 267 (5) : 529 - 540
  • [5] Efficient Isomorphism for Sd-Graphs and T-Graphs
    Agaoglu Cagirici, Deniz
    Hlineny, Petr
    ALGORITHMICA, 2023, 85 (02) : 352 - 383
  • [6] T-graphs and the channel assignment problem
    Liu, DDF
    DISCRETE MATHEMATICS, 1996, 161 (1-3) : 197 - 205
  • [7] T-GRAPHS AND L-GRAPHS AND THEIR CHROMATIC VALUES
    ANTONUCCI, S
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1985, 4D (01): : 137 - 143
  • [8] HAMILTONIAN CYCLES IN GRAPHS
    LIU, ZH
    ZHU, YJ
    TIAN, F
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 367 - 376
  • [9] PRESENTATIONS OF AF ALGEBRAS ASSOCIATED TO T-GRAPHS
    EVANS, DE
    GOULD, JD
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1994, 30 (05) : 767 - 798
  • [10] Long cycles in Hamiltonian graphs
    António Girão
    Teeradej Kittipassorn
    Bhargav Narayanan
    Israel Journal of Mathematics, 2019, 229 : 269 - 285