Data-driven approximation of differential inclusions and application to detection of transportation modes

被引:0
|
作者
Aubin-Frankowski, Pierre-Cyril [1 ]
Petit, Nicolas [2 ]
机构
[1] PSL Res Univ, Ecole Ponts ParisTech, CAS Ctr Automat & Syst, MINES ParisTech, Paris, France
[2] PSL Res Univ, CAS Ctr Automat & Syst, MINES ParisTech, Paris, France
关键词
SUPPORT; IMPLEMENTATION; INTEGRALS; OBSERVER;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article applies the Support Vector Data Description (SVDD) algorithm to approximate the graph of differential inclusions. It is proven that Gaussian SVDD can recover any compact graph if a large enough dataset is available. This data-driven approach can be used to identify discrete-valued parameters of nonlinear dynamical systems with unknown input signal. For illustration, the presented method is applied here both on real and synthetic data for detection of transportation modes based on linear velocity measurements.
引用
收藏
页码:1358 / 1364
页数:7
相关论文
共 50 条
  • [1] Safe Controller Synthesis for Data-Driven Differential Inclusions
    Ahmadi, Mohamadreza
    Israel, Arie
    Topcu, Ufuk
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (11) : 4934 - 4940
  • [2] The ThirdWorkshop on Data-driven Intelligent Transportation
    Wei, Hua
    Sheron, Guni
    Wu, Cathy
    Chawla, Sanjay
    Li, Zhenhui
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5177 - 5178
  • [3] Prospects and challenges of Metaverse application in data-driven intelligent transportation systems
    Njoku, Judith Nkechinyere
    Nwakanma, Cosmas Ifeanyi
    Amaizu, Gabriel Chukwunonso
    Kim, Dong-Seong
    [J]. IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (01) : 1 - 21
  • [4] Data-driven dynamic interpolation and approximation
    Markovsky, Ivan
    Dorfler, Florian
    [J]. AUTOMATICA, 2022, 135
  • [5] Homogeneity of Differential Inclusions: Application to Sliding Modes
    Levant, Arie
    [J]. 2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 2458 - 2463
  • [6] Application of a Novel Data-Driven Framework in Anomaly Detection of Industrial Data
    Song, Ying
    Li, Danjing
    [J]. IEEE ACCESS, 2024, 12 : 102798 - 102812
  • [7] Distributed Data-Driven Control of Transportation Networks
    Toro, Vladimir
    Mojica-Nava, Eduardo
    Rakoto-Ravalontsalama, Naly
    [J]. IFAC PAPERSONLINE, 2022, 55 (10): : 239 - 244
  • [8] Data-Driven Intelligent Transportation Systems: A Survey
    Zhang, Junping
    Wang, Fei-Yue
    Wang, Kunfeng
    Lin, Wei-Hua
    Xu, Xin
    Chen, Cheng
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011, 12 (04) : 1624 - 1639
  • [9] An approach for robust data-driven fault detection with industrial application
    Yin, Shen
    Wang, Guang
    [J]. 39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2013), 2013, : 3317 - 3322
  • [10] Data-Driven Jump Detection Thresholds for Application in Jump Regressions
    Davies, Robert
    Tauchen, George
    [J]. ECONOMETRICS, 2018, 6 (02):