Estimation of critical streamflow discharge level using quantile regression approach

被引:0
|
作者
Mwita, Peter N. [1 ]
Franke, Juergen [1 ]
机构
[1] Jomo Kenyatta Univ Agr & Technol, Dept Math & Stat, PO Box 62000, Nairobi 00200, Kenya
关键词
streamflow; time series; quantiles; nonparametric regression; modelling;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Effective flood risk measures are important tools for river catchments' management. Among others, flood hazard mitigation programs and insurance companies can actively use these measures for reservoir operations, relief effort planning and premium setting, respectively. This work develops a nonparametric quantile regression approach for the estimation of flood quantiles conditional on past strearnflow discharges. The resulting estimator of conditional quantiles is found to be consistent and asymptotically normal. Real data from a streamflow gauging station in the Nyando Basin, Western Kenya, is used to demonstrate the potential of the approach.
引用
收藏
页码:177 / +
页数:3
相关论文
共 50 条
  • [1] Quantile regression approach to conditional mode estimation
    Ota, Hirofumi
    Kato, Kengo
    Hara, Satoshi
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 3120 - 3160
  • [2] A New Approach to Censored Quantile Regression Estimation
    Yang, Xiaorong
    Narisetty, Naveen Naidu
    He, Xuming
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (02) : 417 - 425
  • [3] Neural networks for quantile claim amount estimation: a quantile regression approach
    Laporta, Alessandro G.
    Levantesi, Susanna
    Petrella, Lea
    [J]. ANNALS OF ACTUARIAL SCIENCE, 2024, 18 (01) : 30 - 50
  • [4] Estimation of the uncertainty in water level forecasts at ungauged river locations using quantile regression
    Roscoe, Kathryn L.
    Weerts, Albrecht H.
    Schroevers, Marinus
    [J]. INTERNATIONAL JOURNAL OF RIVER BASIN MANAGEMENT, 2012, 10 (04) : 383 - 394
  • [5] Using Nonlinear Quantile Regression for the Estimation of Software Cost
    De Andres, J.
    Landajo, M.
    Lorca, P.
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS (HAIS 2018), 2018, 10870 : 422 - 432
  • [6] Estimation of additive quantile regression
    Holger Dette
    Regine Scheder
    [J]. Annals of the Institute of Statistical Mathematics, 2011, 63 : 245 - 265
  • [7] Estimation of additive quantile regression
    Dette, Holger
    Scheder, Regine
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (02) : 245 - 265
  • [8] An implementation for regression quantile estimation
    Yee, TW
    [J]. COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 3 - 14
  • [9] Estimation for generalized linear cointegration regression models through composite quantile regression approach
    Liu, Bingqi
    Pang, Tianxiao
    Cheng, Siang
    [J]. FINANCE RESEARCH LETTERS, 2024, 65
  • [10] Modelling the impact of road traffic on ground level ozone concentration using a quantile regression approach
    Munir, Said
    Chen, Haibo
    Ropkins, Karl
    [J]. ATMOSPHERIC ENVIRONMENT, 2012, 60 : 283 - 291