Robust testing in the logistic regression model

被引:34
|
作者
Bianco, Ana M. [1 ,2 ]
Martinez, Elena
机构
[1] Univ Buenos Aires, Inst Calculo, FCE&N, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
关键词
GENERALIZED LINEAR-MODELS; BOUNDED-INFLUENCE; ESTIMATOR; FITS;
D O I
10.1016/j.csda.2009.04.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We are interested in testing hypotheses that concern the parameter of a logistic regression model. A robust Wald-type test based on a weighted Bianco and Yohai [ Bianco, A.M., Yohai, V.J., 1996. Robust estimation in the logistic regression model. In: H. Rieder (Ed) Robust Statistics, Data Analysis, and Computer Intensive Methods In: Lecture Notes in Statistics, vol. 109, Springer Verlag, New York, pp. 17-34] estimator, as implemented by Croux and Haesbroeck [Croux, C., Haesbroeck, G., 2003. Implementing the Bianco and Yohai estimator for logistic regression. Computational Statististics and Data Analysis 44, 273-295], is proposed. The asymptotic distribution of the test statistic is derived. We carry out an empirical study to get a further insight into the stability of the p-value. Finally, a Monte Carlo study is performed to investigate the stability of both the level and the power of the test, for different choices of the weight function. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4095 / 4105
页数:11
相关论文
共 50 条
  • [1] Robust estimation in the logistic regression model
    Kordzakhia, N
    Mishra, GD
    Reiersolmoen, L
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 98 (1-2) : 211 - 223
  • [2] Robust variable selection in the logistic regression model
    Jiang, Yunlu
    Zhang, Jiantao
    Huang, Yingqiang
    Zou, Hang
    Huang, Meilan
    Chen, Fanhong
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (05): : 1572 - 1582
  • [3] Logistic Regression with Robust Bootstrapping
    Li, Yawei
    Fauss, Michael
    Zoubir, Abdelhak M.
    [J]. 2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 346 - 350
  • [4] Robust Logistic Regression and Classification
    Feng, Jiashi
    Xu, Huan
    Mannor, Shie
    Yan, Shuicheng
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [5] Robust and sparse logistic regression
    Cornilly, Dries
    Tubex, Lise
    Van Aelst, Stefan
    Verdonck, Tim
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (03) : 663 - 679
  • [6] Distributionally Robust Logistic Regression
    Shafieezadeh-Abadeh, Soroosh
    Esfahani, Peyman Mohajerin
    Kuhn, Daniel
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [7] Robust functional logistic regression
    Akturk, Berkay
    Beyaztas, Ufuk
    Shang, Han Lin
    Mandal, Abhijit
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024,
  • [8] Robust polytomous logistic regression
    Miron, Julien
    Poilane, Benjamin
    Cantoni, Eva
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 176
  • [9] Logistic regression in immunity testing
    Giunta, G.
    Audone, B.
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY: WORKSHOP AND TUTORIAL NOTES, VOLS 1-3, 2007, : 243 - 248
  • [10] Improved transformed deviance statistic for testing a logistic regression model
    Taneichi, Nobuhiro
    Sekiya, Yuri
    Toyama, Jun
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (09) : 1263 - 1279