Solvability of Solid Tumor Invasion Model

被引:1
|
作者
Mani, V. N. Deiva [1 ]
Anthoni, S. Marshal [1 ]
Nyamoradi, N. [2 ]
机构
[1] Anna Univ, Dept Math, Reg Campus, Coimbatore, Tamil Nadu, India
[2] Razi Univ, Dept Math, Fac Sci, Kermanshah 67149, Iran
关键词
Tumor invasion system; renormalized solution; 35K65; 92D25; NONLINEAR PARABOLIC PROBLEMS; CHEMOTAXIS-HAPTOTAXIS MODEL; GLOBAL WEAK SOLUTIONS; NAVIER-STOKES SYSTEM; RENORMALIZED SOLUTIONS; ASYMPTOTIC-BEHAVIOR; CLASSICAL-SOLUTIONS; ANGIOGENESIS MODEL; CANCER INVASION; EXISTENCE;
D O I
10.1007/s00025-021-01346-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We illustrate the solvability through weak-renormalized solutions for an invasion system of healthy tissue by a solid tumor under the Dirichlet boundary conditions and the assumptions of no growth conditions and integrable data. This model consists of four parameters: tumor cell density, matrix degradation enzyme concentration, macromolecules concentration, and oxygen concentration.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Solvability of Solid Tumor Invasion Model
    V. N. Deiva Mani
    S. Marshal Anthoni
    N. Nyamoradi
    [J]. Results in Mathematics, 2021, 76
  • [2] Solvability and numerical simulations for tumor invasion model with nonlinear diffusion
    Manimaran, Jeyaraj
    Shangerganesh, Lingeshwaran
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS, 2020, 2 (02)
  • [3] Optimal control and pattern formation for a haptotaxis model of solid tumor invasion
    Dai, Feng
    Liu, Bin
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (16): : 9364 - 9406
  • [4] Analysis of virotherapy in solid tumor invasion
    Malinzi, Joseph
    Sibanda, Precious
    Mambili-Mamboundou, Hermane
    [J]. MATHEMATICAL BIOSCIENCES, 2015, 263 : 102 - 110
  • [5] Global solvability and stabilization to a cancer invasion model with remodelling of ECM
    Jin, Chunhua
    [J]. NONLINEARITY, 2020, 33 (10) : 5049 - 5079
  • [6] An efficient approximate analytical technique for the fractional model describing the solid tumor invasion
    Chethan, H. B.
    Saadeh, Rania
    Prakasha, D. G.
    Qazza, Ahmad
    Malagi, Naveen S.
    Nagaraja, M.
    Sarwe, Deepak Umrao
    [J]. FRONTIERS IN PHYSICS, 2024, 12
  • [7] Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching
    Vittorio Cristini
    Xiangrong Li
    John S. Lowengrub
    Steven M. Wise
    [J]. Journal of Mathematical Biology, 2009, 58 : 723 - 763
  • [8] Numerical Simulation of Solid Tumor Invasion and Metastasis with a Continuum-Discrete Model
    Yazdi, Mahdieh Roghani
    Naghavi, Nadia
    Hosseini, Farideh
    [J]. SECOND INTERNATIONAL CONGRESS ON TECHNOLOGY, COMMUNICATION AND KNOWLEDGE (ICTCK 2015), 2015, : 382 - 387
  • [9] Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching
    Cristini, Vittorio
    Li, Xiangrong
    Lowengrub, John S.
    Wise, Steven M.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (4-5) : 723 - 763
  • [10] AN INTRACRANIAL MODEL FOR TUMOR INVASION
    MCGRADY, B
    MCCORMICK, D
    [J]. JOURNAL OF PATHOLOGY, 1989, 157 (02): : A166 - A166