DUALLY FLAT FINSLER SPACES ASSOCIATED WITH RANDERS-β CHANGE

被引:0
|
作者
Shanker, Gauree [1 ]
Rani, Sarita [1 ]
Kaur, Kirandeep [1 ]
机构
[1] Cent Univ Punjab, Sch Basic & Appl Sci, Dept Math & Stat, Bathinda 151001, Punjab, India
来源
关键词
(alpha; beta); -metric; beta; -change; Randers Change; dual flatness;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The present paper deals with the property of dually flatness of Finsler spaces with some special (alpha, beta) - metrics constructed in [10] via Randers-beta. change. Here, we find necessary and sufficient conditions under which the Randers change of these (alpha, beta) - metrics are locally dually flat. Finally, we conclude the interrelation between the locally dually flatness of all these metrics.
引用
收藏
页码:95 / 105
页数:11
相关论文
共 50 条
  • [1] On dually flat Randers metrics
    Yu, Changtao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 146 - 155
  • [2] On dually flat Finsler metrics
    Li, Benling
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (06) : 718 - 724
  • [3] ON COMPLEX FINSLER SPACES WITH RANDERS METRIC
    Aldea, Nicoleta
    Munteanu, Gheorghe
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) : 949 - 966
  • [4] ON LOCALLY DUALLY FLAT FINSLER METRICS
    Cheng, Xinyue
    Shen, Zhongmin
    Zhou, Yusheng
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (11) : 1531 - 1543
  • [5] ON THE CONSTRUCTION OF DUALLY FLAT FINSLER METRICS
    Huang, Libing
    Liu, Huaifu
    Mo, Xiaohuan
    OSAKA JOURNAL OF MATHEMATICS, 2015, 52 (02) : 377 - 391
  • [6] The explicit construction of all dually flat Randers metrics
    Liu, Huaifu
    Mo, Xiaohuan
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (07)
  • [7] DUALLY FLAT AND PROJECTIVELY FLAT FINSLER WARPED PRODUCT STRUCTURES
    Zhang, Xiaoling
    Zhang, Xuesong
    Zhao, Lili
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (06) : 1359 - 1370
  • [8] Dually flat and projectively flat Minkowskian product Finsler metrics
    Li, Jiahui
    He, Yong
    Zhang, Xiaoling
    Zhang, Na
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 524 (02)
  • [9] EIGENVALUE ESTIMATES FOR THE LAPLACIAN ON FINSLER SPACES OF RANDERS TYPE
    Munteanu, Ovidiu
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (02): : 393 - 404
  • [10] On strongly convex projectively flat and dually flat complex Finsler metrics
    Xia, Hongchuan
    Zhong, Chunping
    JOURNAL OF GEOMETRY, 2018, 109 (03)