DERIVATIONS OF PRIME AND SEMIPRIME RINGS

被引:21
|
作者
Argac, Nurcan [1 ]
Inceboz, Hulya G. [2 ]
机构
[1] Ege Univ, Dept Math, Fac Sci, TR-35100 Izmir, Turkey
[2] Adnan Menderes Univ, Dept Math, Sci & Art Fac, TR-09010 Aydin, Turkey
关键词
prime and semiprime rings; left Utumi quotient rings; differential identities; derivations;
D O I
10.4134/JKMS.2009.46.5.997
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and n a fixed positive integer. (i) If (d(x)y+xd(y)+d(y)x+yd(x))(n) = xy+yx for all x, y is an element of I, then R is commutative. (ii) If char R not equal 2 and (d(x)y + xd(y) + d(y)x + yd(x))(n) - (xy + yx) is central for all x, y is an element of I, then R is commutative. We also examine the case where R is a semiprime ring.
引用
收藏
页码:997 / 1005
页数:9
相关论文
共 50 条
  • [1] On prime and semiprime rings with derivations
    Argaç, N
    [J]. ALGEBRA COLLOQUIUM, 2006, 13 (03) : 371 - 380
  • [2] ON GENERALIZED DERIVATIONS OF PRIME AND SEMIPRIME RINGS
    Huang, Shuliang
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (02): : 771 - 776
  • [3] Generalized derivations in prime and semiprime rings
    Huang, Shuliang
    Rehman, Nadeem ur
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2016, 34 (02): : 29 - 34
  • [4] ON GENERALIZED DERIVATIONS AND COMMUTATIVITY OF PRIME AND SEMIPRIME RINGS
    Ali, Asma
    Kumar, Deepak
    Miyan, Phool
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (03): : 367 - 374
  • [5] Derivations with engel conditions in prime and semiprime rings
    Shuliang Huang
    [J]. Czechoslovak Mathematical Journal, 2011, 61 : 1135 - 1140
  • [6] Derivations with engel conditions in prime and semiprime rings
    Huang, Shuliang
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (04) : 1135 - 1140
  • [7] On multiplicative (generalized)-derivations in prime and semiprime rings
    Basudeb Dhara
    Shakir Ali
    [J]. Aequationes mathematicae, 2013, 86 : 65 - 79
  • [8] On multiplicative (generalized)-derivations in prime and semiprime rings
    Dhara, Basudeb
    Ali, Shakir
    [J]. AEQUATIONES MATHEMATICAE, 2013, 86 (1-2) : 65 - 79
  • [9] Generalized alpha-Derivations on Prime and Semiprime Rings
    Najati, Abbas
    Saem, Maryam Mohammadi
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2016, 40 (01) : 93 - 100
  • [10] Semiprime rings with prime ideals invariant under derivations
    Chuang, CL
    Lee, TK
    [J]. JOURNAL OF ALGEBRA, 2006, 302 (01) : 305 - 312