On holomorphic principal bundles over a compact Riemann surface admitting a flat connection

被引:24
|
作者
Azad, H [1 ]
Biswas, I
机构
[1] King Fahd Univ Petr & Minerals, Dept Math Sci, Dhahran 31261, Saudi Arabia
[2] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
Mathematics Subject Classification (1991): 14H60, 32L05.;
D O I
10.1007/s002080100273
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected reductive linear algebraic group over C, and X a compact connected Riemann surface. Let L subset of G be a Levi factor of some parabolic subgroup of G, with L-0 = L/[L, L] its maximal abelian quotient. We prove that a holomorphic G-bundle E-G over X admits a flat connection if and only if for every such L and every reduction E-L subset of E-G Of the structure group of E-G to L, the L-0-bundle obtained by extending the structure group of E-L is topologically trivial. For G = GL(n, C) this is a well-known result of A. Weil.
引用
收藏
页码:333 / 346
页数:14
相关论文
共 50 条