The four-parameter Burr XII distribution: Properties, regression model, and applications

被引:30
|
作者
Afify, Ahmed Z. [1 ]
Cordeiro, Gauss M. [2 ]
Ortega, Edwin M. M. [3 ]
Yousof, Haitham M. [1 ]
Butt, Nadeem Shafique [4 ]
机构
[1] Benha Univ, Dept Stat Math & Insurance, Banha 13518, Egypt
[2] Univ Fed Pernambuco, Dept Estat, Recife, PE, Brazil
[3] Univ Sao Paulo, Dept Ciencias Exatas, Piracicaba, SP, Brazil
[4] KAU, Dept Family & Community Med, Jeddah, Saudi Arabia
关键词
Burr XII; maximum likelihood; moments; order statistics; Weibull G-family; MAXIMUM-LIKELIHOOD;
D O I
10.1080/03610926.2016.1231821
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a new four-parameter lifetime model called the Weibull Burr XII distribution. The new model has the advantage of being capable of modeling various shapes of aging and failure criteria. We derive some of its structural properties including ordinary and incomplete moments, quantile and generating functions, probability weighted moments, and order statistics. The new density function can be expressed as a linear mixture of Burr XII densities. We propose a log-linear regression model using a new distribution so-called the log-Weibull Burr XII distribution. The maximum likelihood method is used to estimate the model parameters. Simulation results to assess the performance of the maximum likelihood estimation are discussed. We prove empirically the importance and flexibility of the new model in modeling various types of data.
引用
收藏
页码:2605 / 2624
页数:20
相关论文
共 50 条
  • [1] A new four-parameter extension of Burr-XII distribution: its properties and applications
    Laba Handique
    Subrata Chakraborty
    [J]. Japanese Journal of Statistics and Data Science, 2018, 1 (2) : 271 - 296
  • [2] A new four-parameter extension of Burr-XII distribution: its properties and applications
    Handique, Laba
    Chakraborty, Subrata
    [J]. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2018, 1 (02) : 271 - 296
  • [3] The four-parameter Frechet distribution: Properties and applications
    Hamed, M. S.
    Aldossary, Fahad
    Afify, Ahmed Z.
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2020, 16 (02) : 249 - 264
  • [4] Mathematical Model to estimate the wind power using four-parameter Burr distribution
    Liu, Sanming
    Wang, Zhijie
    Pan, Zhaoxu
    [J]. 2017 INTERNATIONAL SYMPOSIUM ON APPLICATION OF MATERIALS SCIENCE AND ENERGY MATERIALS (SAMSE 2017), 2018, 322
  • [5] The Burr XII System of densities: properties, regression model and applications
    Cordeiro, Gauss M.
    Yousof, Haitham M.
    Ramires, Thiago G.
    Ortega, Edwin M. M.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (03) : 432 - 456
  • [6] A new useful four-parameter extension of the Gumbel distribution: Properties, regression model and applications using the GAMLSS framework
    Alizadeh, Morad
    Ramires, Thiago G.
    MirMostafaee, S. M. T. K.
    Samizadeh, Maryam
    Ortega, Edwin M. M.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (06) : 1746 - 1767
  • [7] New Weighted Burr XII Distribution: Statistical Properties, Applications, and Regression
    Anafo, Abdulzeid Yen
    Ocloo, Selasi Kwaku
    Nasiru, Suleman
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2024, 2024
  • [8] Regression in extremes using the four-parameter Kappa distribution
    Costa, Laila Leticia da Silva
    do Nascimento, Fernando Ferraz
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [9] Particle Swarm Optimization Applied to Parameter Estimation of the Four-Parameter Burr III Distribution
    Ozsoy, Volkan Soner
    Orkcu, H. Hasan
    Bal, Hasan
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2): : 895 - 909
  • [10] Particle Swarm Optimization Applied to Parameter Estimation of the Four-Parameter Burr III Distribution
    Volkan Soner Özsoy
    H. Hasan Örkcü
    Hasan Bal
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 895 - 909