Functional Simulation of Human Blood Identification Device using Feed-Forward Artificial Neural Network for FPGA Implementation

被引:0
|
作者
Darlis, Denny [1 ]
Murwati, Heri [1 ]
Priramadhi, Rizki Ardianto [1 ]
Ramdhani, Mohamad [1 ]
Nugraha, M. Bima [1 ]
机构
[1] Telkom Univ, Bandung, Indonesia
关键词
feedforward propagation; artificial neural network; FPGA; human blood type identification;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The identification of human blood type still requires a fast and accurate device considering the number of blood samples that need to be distributed and transfused immediately. In this study we propose a hardware implementation of human blood type identification devices using feedforward neural network algorithms on grayscale images of blood samples. The images to be used are 32x32 pixels, 48x48 pixels, 64x64, 80x80, and 96x96 pixels. The algorithm were implemented using VHSIC Hardware Description Language. With artifical neural network implemented on Xilinx FPGA Spartan 3S1000, the success rate of detection by grouping by the mean and median ratios of the number of '1' bits is more than 75%.
引用
收藏
页码:142 / 145
页数:4
相关论文
共 50 条
  • [1] Implementation of a Feed-forward Artificial Neural Network in VHDL on FPGA
    Dondon, Philippe
    Carvalho, Julien
    Gardere, Remi
    Lahalle, Paul
    Tsenov, Georgi
    Mladenov, Valeri
    [J]. 2014 12TH SYMPOSIUM ON NEURAL NETWORK APPLICATIONS IN ELECTRICAL ENGINEERING (NEUREL), 2014, : 37 - 40
  • [2] Quantum implementation of an artificial feed-forward neural network
    Tacchino, Francesco
    Barkoutsos, Panagiotis
    Macchiavello, Chiara
    Tavernelli, Ivano
    Gerace, Dario
    Bajoni, Daniele
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04)
  • [3] Application of a feed-forward artificial neural network as a mapping device
    Kocjancic, R
    Zupan, J
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1997, 37 (06): : 985 - 989
  • [4] Re-configurable parallel Feed-Forward Neural Network implementation using FPGA
    El-Sharkawy, Mohamed
    Wael, Miran
    Mashaly, Maggie
    Azab, Eman
    [J]. INTEGRATION-THE VLSI JOURNAL, 2024, 97
  • [5] Optimizing FPGA implementation of Feed-Forward Neural Networks
    Oniga, S.
    Tisan, A.
    Mic, D.
    Buchman, A.
    Vida-Ratiu, A.
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT, VOL IV, 2008, : 31 - 36
  • [6] An Approach of Feed-Forward Neural Network Throughput-Optimized Implementation in FPGA
    Novickis, Rihards
    Justs, Daniels Janis
    Ozols, Kaspars
    Greitans, Modris
    [J]. ELECTRONICS, 2020, 9 (12) : 1 - 16
  • [7] Botnet Detection Using a Feed-Forward Backpropagation Artificial Neural Network
    Ahmed, Abdulghani Ali
    [J]. COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS (CIIS 2018), 2019, 888 : 24 - 35
  • [8] FPGA Implementation of Feed-Forward Neural Networks for Smart Devices Development
    Oniga, Stefan
    Tisan, Alin
    Mic, Daniel
    Lung, Claudiu
    Orha, Ioan
    Buchman, Attila
    Vida-Ratiu, Andrei
    [J]. ISSCS 2009: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS,, 2009, : 401 - 404
  • [9] Prediction of lead corrosion behavior using feed-forward artificial neural network
    S. Jalili
    A. Jaberi
    M. G. Mahjani
    M. Jafarian
    [J]. Journal of the Iranian Chemical Society, 2008, 5 : 669 - 676
  • [10] Prediction of Lead Corrosion Behavior Using Feed-Forward Artificial Neural Network
    Jalili, S.
    Jaberi, A.
    Mahjani, M. G.
    Jafarian, M.
    [J]. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2008, 5 (04) : 669 - 676