TSFEL: Time Series Feature Extraction Library

被引:260
|
作者
Barandas, Marilia [1 ]
Folgado, Duarte [1 ]
Fernandes, Leticia [1 ]
Santos, Sara [1 ]
Abreu, Mariana [1 ]
Bota, Patricia [1 ]
Liu, Hui [2 ]
Schultz, Tanja [2 ]
Gamboa, Hugo [1 ,3 ]
机构
[1] Assoc Fraunhofer Portugal Res, Rua Alfredo Allen 455-461, Porto, Portugal
[2] Univ Bremen, Cognit Syst Lab, Bremen, Germany
[3] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Fis, Lab Instrumentacao Engn Biomed & Fis Radiacao LIB, P-2892516 Monte De Caparica, Caparica, Portugal
关键词
Time series; Machine learning; Feature extraction; !text type='Python']Python[!/text; TRANSFORM; ENTROPY;
D O I
10.1016/j.softx.2020.100456
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Time series feature extraction is one of the preliminary steps of conventional machine learning pipelines. Quite often, this process ends being a time consuming and complex task as data scien-tists must consider a combination between a multitude of domain knowledge factors and coding implementation. We present in this paper a Python package entitled Time Series Feature Extraction Library (TSFEL), which computes over 60 different features extracted across temporal, statistical and spectral domains. User customisation is achieved using either an online interface or a conventional Python package for more flexibility and integration into real deployment scenarios. TSFEL is designed to support the process of fast exploratory data analysis and feature extraction on time series with computational cost evaluation. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Feature Extraction Accelerator for Streaming Time Series
    Yuvaraj, Prithviraj
    Akalantar, Amin
    Keogh, Eamon
    Brisk, Philip
    2023 IEEE 31ST ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, FCCM, 2023, : 207 - 207
  • [2] Feature extraction from time series data
    Toshniwal, Durga
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2009, 9 (01) : S99 - S110
  • [3] Time Series Feature Extraction for Machine Olfaction
    Shakya, Pratistha
    Kennedy, Eamonn
    Rose, Christopher
    Rosenstein, Jacob K.
    2019 IEEE SENSORS, 2019,
  • [4] A time series forest for classification and feature extraction
    Deng, Houtao
    Runger, George
    Tuv, Eugene
    Vladimir, Martyanov
    INFORMATION SCIENCES, 2013, 239 : 142 - 153
  • [5] Multiscale feature extraction for time series classification with hybrid feature selection
    Zhang, Hui
    Lin, Mao-Song
    Huang, Wei
    Kawasaki, Saori
    Ho, Tu Bao
    INTELLIGENT CONTROL AND AUTOMATION, 2006, 344 : 939 - 944
  • [6] A System for Time Series Feature Extraction in Federated Learning
    Wang, Siqi
    Li, Jiashu
    Lu, Mian
    Zheng, Zhao
    Chen, Yuqiang
    He, Bingsheng
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5024 - 5028
  • [7] A qualitative feature extraction method for time series analysis
    Xie, Jinfei
    Yan, Wei-Yong
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 1367 - +
  • [8] tsflex: Flexible time series processing & feature extraction
    Van der Donckt, Jonas
    Van der Donckt, Jeroen
    Deprost, Emiel
    Van Hoecke, Sofie
    SOFTWAREX, 2022, 17
  • [9] Automatic feature extraction from large time series
    Mierswa, I
    Classification - the Ubiquitous Challenge, 2005, : 600 - 607
  • [10] Feature Extraction for Change Analysis in SAR Time Series
    Boldt, Markus
    Thiele, Antje
    Schulz, Karsten
    Hinz, Stefan
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS VI, 2015, 9644