Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana

被引:73
|
作者
Ni, Zhiyong [1 ]
Hu, Zheng [1 ]
Jiang, Qiyan [1 ]
Zhang, Hui [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Crop Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
Drought tolerance; F-box protein; gma-MIR394a; Soybean; STRESS-REGULATED MICRORNAS; SMALL RNAS; PLANTS; TARGETS; IDENTIFICATION; GENE; DEFICIENCY; EXPRESSION; MIRNAS;
D O I
10.1016/j.bbrc.2012.09.055
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs, key posttranscriptional regulators of eukaryotic gene expression, play important roles in plant development and response to stress. In this study, a soybean gma-MIR394a gene was functionally characterized, especially with regard to its role in drought stress resistance. Expression analysis revealed that gma-MIR394a was expressed differentially in various soybean tissues and was induced by drought, high salinity, low temperature stress, and abscisic acid treatment in leaves. One target gene of gma-miR394a, Glyma08g11030, was predicted and verified using a modified 5' RLM-RACE (RNA ligase-mediated rapid amplification of 5' cDNA ends) assay. Overexpression of gma-MIR394a resulted in plants with lowered leaf water loss and enhanced drought tolerance. Furthermore, overexpression of gma-MIR394a in Arabidopsis reduced the transcript of an F-box gene (At1g27340) containing a miR394 complementary target site. These results suggest that the gma-MIR394a gene functions in positive modulation of drought stress tolerance and has potential applications in molecular breeding to enhance drought tolerance in crops. (C) 2012 Published by Elsevier Inc.
引用
收藏
页码:330 / 335
页数:6
相关论文
共 50 条
  • [1] Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana
    Yu, Yuehua
    Ni, Zhiyong
    Wang, Yi
    Wan, Huina
    Hu, Zheng
    Jiang, Qiyan
    Sun, Xianjun
    Zhang, Hui
    PLANT SCIENCE, 2019, 285 : 68 - 78
  • [2] Overexpression of Zm-HINT1 Confers Salt and Drought Tolerance in Arabidopsis thaliana
    Xiaofeng Zu
    Ping Liu
    Shunxi Wang
    Lei Tian
    Zhiqiang Tian
    Yanhui Chen
    Liuji Wu
    Plant Molecular Biology Reporter, 2018, 36 : 310 - 325
  • [3] Overexpression of Zm-HINT1 Confers Salt and Drought Tolerance in Arabidopsis thaliana
    Zu, Xiaofeng
    Liu, Ping
    Wang, Shunxi
    Tian, Lei
    Tian, Zhiqiang
    Chen, Yanhui
    Wu, Liuji
    PLANT MOLECULAR BIOLOGY REPORTER, 2018, 36 (02) : 310 - 325
  • [4] Overexpression of GmNFYA5 confers drought tolerance to transgenic Arabidopsis and soybean plants
    Xiao-Jun Ma
    Tai-Fei Yu
    Xiao-Hui Li
    Xin-You Cao
    Jian Ma
    Jun Chen
    Yong-Bin Zhou
    Ming Chen
    You-Zhi Ma
    Jun-Hua Zhang
    Zhao-Shi Xu
    BMC Plant Biology, 20
  • [5] Overexpression of GmNFYA5 confers drought tolerance to transgenic Arabidopsis and soybean plants
    Ma, Xiao-Jun
    Yu, Tai-Fei
    Li, Xiao-Hui
    Cao, Xin-You
    Ma, Jian
    Chen, Jun
    Zhou, Yong-Bin
    Chen, Ming
    Ma, You-Zhi
    Zhang, Jun-Hua
    Xu, Zhao-Shi
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [6] Overexpression of a maize MYB48 gene confers drought tolerance in transgenic arabidopsis plants
    Yan Wang
    Qianqian Wang
    MingLi Liu
    Chen Bo
    Xi Wang
    Qing Ma
    Beijiu Cheng
    Ronghao Cai
    Journal of Plant Biology, 2017, 60 : 612 - 621
  • [7] Overexpression of a maize MYB48 gene confers drought tolerance in transgenic arabidopsis plants
    Wang, Yan
    Wang, Qianqian
    Liu, MingLi
    Bo, Chen
    Wang, Xi
    Ma, Qing
    Cheng, Beijiu
    Cai, Ronghao
    JOURNAL OF PLANT BIOLOGY, 2017, 60 (06) : 612 - 621
  • [8] Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants
    Zuo, Bixiao
    Zheng, Xiaodong
    He, Pingli
    Wang, Lin
    Lei, Qiong
    Feng, Chao
    Zhou, Jingzhe
    Li, Qingtian
    Han, Zhenhai
    Kong, Jin
    JOURNAL OF PINEAL RESEARCH, 2014, 57 (04) : 408 - 417
  • [9] The Wheat Gene TaVQ14 Confers Salt and Drought Tolerance in Transgenic Arabidopsis thaliana Plants
    Cheng, Xinran
    Yao, Hui
    Cheng, Zuming
    Tian, Bingbing
    Gao, Chang
    Gao, Wei
    Yan, Shengnan
    Cao, Jiajia
    Pan, Xu
    Lu, Jie
    Ma, Chuanxi
    Chang, Cheng
    Zhang, Haiping
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [10] Overexpression of a protein kinase gene MpSnRK2.10 from Malus prunifolia confers tolerance to drought stress in transgenic Arabidopsis thaliana and apple
    Shao, Yun
    Zhang, Xiaoli
    van Nocker, Steve
    Gong, Xiaoqing
    Ma, Fengwang
    GENE, 2019, 692 : 26 - 34