Text Gestalt: Stroke-Aware Scene Text Image Super-resolution

被引:0
|
作者
Chen, Jingye [1 ]
Yu, Haiyang [1 ]
Ma, Jianqi [2 ]
Li, Bin [1 ]
Xue, Xiangyang [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China
[2] Hong Kong Polytech Univ, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
RECOGNITION; NETWORK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the last decade, the blossom of deep learning has witnessed the rapid development of scene text recognition. However, the recognition of low-resolution scene text images remains a challenge. Even though some super-resolution methods have been proposed to tackle this problem, they usually treat text images as general images while ignoring the fact that the visual quality of strokes (the atomic unit of text) plays an essential role for text recognition. According to Gestalt Psychology, humans are capable of composing parts of details into the most similar objects guided by prior knowledge. Likewise, when humans observe a low-resolution text image, they will inherently use partial stroke-level details to recover the appearance of holistic characters. Inspired by Gestalt Psychology, we put forward a Stroke-Aware Scene Text Image Super-Resolution method containing a Stroke-Focused Module (SFM) to concentrate on stroke-level internal structures of characters in text images. Specifically, we attempt to design rules for decomposing English characters and digits at stroke-level, then pre-train a text recognizer to provide stroke-level attention maps as positional clues with the purpose of controlling the consistency between the generated super-resolution image and high-resolution ground truth. The extensive experimental results validate that the proposed method can indeed generate more distinguishable images on Text-Zoom and manually constructed Chinese character dataset Degraded-IC13. Furthermore, since the proposed SFM is only used to provide stroke-level guidance when training, it will not bring any time overhead during the test phase.
引用
收藏
页码:285 / 293
页数:9
相关论文
共 50 条
  • [1] Text Prior Guided Scene Text Image Super-Resolution
    Ma, Jianqi
    Guo, Shi
    Zhang, Lei
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 1341 - 1353
  • [2] Scene Text Telescope: Text-Focused Scene Image Super-Resolution
    Chen, Jingye
    Li, Bin
    Xue, Xiangyang
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 12021 - 12030
  • [3] Batch-transformer for scene text image super-resolution
    Sun, Yaqi
    Xie, Xiaolan
    Li, Zhi
    Yang, Kai
    [J]. VISUAL COMPUTER, 2024, 40 (10): : 7399 - 7409
  • [4] Perceiving Multiple Representations for scene text image super-resolution guided by text recognizer
    Shi, Qin
    Zhu, Yu
    Liu, Yatong
    Ye, Jiongyao
    Yang, Dawei
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 124
  • [5] A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution
    Ma, Jianqi
    Liang, Zhetong
    Zhang, Lei
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5901 - 5910
  • [6] Text-Enhanced Scene Image Super-Resolution via Stroke Mask and Orthogonal Attention
    Shu, Rui
    Zhao, Cairong
    Feng, Shuyang
    Zhu, Liang
    Miao, Duoqian
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (11) : 6317 - 6330
  • [7] A Benchmark for Chinese-English Scene Text Image Super-resolution
    Ma, Jianqi
    Liang, Zhetong
    Xiang, Wangmeng
    Yang, Xi
    Zhang, Lei
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 19395 - 19404
  • [8] Text Image Super-resolution by Image Matting and Text Label Supervision
    Lin, Kai
    Liu, Yubao
    Li, Thomas H.
    Liu, Shan
    Li, Ge
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 1722 - 1727
  • [9] Scene Text Image Super-Resolution via Parallelly Contextual Attention Network
    Zhao, Cairong
    Feng, Shuyang
    Zhao, Brian Nlong
    Ding, Zhijun
    Wu, Jun
    Shen, Fuming
    Shen, Heng Tao
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2908 - 2917
  • [10] Self-supervised memory learning for scene text image super-resolution
    Guo, Kehua
    Zhu, Xiangyuan
    Schaefer, Gerald
    Ding, Rui
    Fang, Hui
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258