TWO-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION WITH RANDOM RADIAL DATA

被引:47
|
作者
Deng, Yu [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
来源
ANALYSIS & PDE | 2012年 / 5卷 / 05期
关键词
nonlinear Schrodinger equation; supercritical NLS; random data; Gibbs measure; global well-posedness; GLOBAL WELL-POSEDNESS; DATA CAUCHY-THEORY; INVARIANT-MEASURES;
D O I
10.2140/apde.2012.5.913
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study radial solutions of a certain two-dimensional nonlinear Schrodinger (NLS) equation with harmonic potential, which is supercritical with respect to the initial data. By combining the nonlinear smoothing effect of Schrodinger equation with L-p estimates of Laguerre functions, we are able to prove an almost-sure global well-posedness result and the invariance of the Gibbs measure. We also discuss an application to the NLS equation without harmonic potential.
引用
收藏
页码:913 / 960
页数:48
相关论文
共 50 条
  • [1] Exact solutions of a two-dimensional nonlinear Schrodinger equation
    Seadawy, Aly R.
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (04) : 687 - 691
  • [2] Nonlinear Evolutionary Schrodinger Equation in a Two-Dimensional Domain
    Nasibov, Sh. M.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 201 (01) : 1514 - 1520
  • [3] Two-dimensional dark soliton in the nonlinear Schrodinger equation
    Sakaguchi, Hidetsugu
    Higashiuchi, Tomoko
    [J]. PHYSICS LETTERS A, 2006, 359 (06) : 647 - 651
  • [4] Instabilities in the two-dimensional cubic nonlinear Schrodinger equation
    Carter, JD
    Segur, H
    [J]. PHYSICAL REVIEW E, 2003, 68 (04):
  • [5] The two-dimensional fractional discrete nonlinear Schrodinger equation
    Molina, Mario, I
    [J]. PHYSICS LETTERS A, 2020, 384 (33)
  • [6] The cubic nonlinear Schrodinger equation in two dimensions with radial data
    Killip, Rowan
    Tao, Terence
    Visan, Monica
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (06) : 1203 - 1258
  • [7] Cubic Nonlinear Schrodinger Equation on Three Dimensional Balls with Radial Data
    Anton, Ramona
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (10) : 1862 - 1889
  • [8] Peak point displacement in the two-dimensional nonlinear Schrodinger equation
    Yang, Y
    Tan, Y
    Zhang, WY
    Zheng, CY
    [J]. PHYSICS LETTERS A, 1996, 216 (06) : 247 - 254
  • [9] An introduction to the two-dimensional Schrodinger equation with nonlinear point interactions
    Carlone, R.
    Correggi, M.
    Tentarelli, L.
    [J]. NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2018, 9 (02): : 187 - 195
  • [10] A Local Radial Point Interpolation Method for Two-dimensional Schrodinger Equation
    Zhai Weigang
    Cai Xinghui
    Lu Jiangren
    Sun Xinli
    [J]. MATERIALS, MECHANICAL ENGINEERING AND MANUFACTURE, PTS 1-3, 2013, 268-270 : 1888 - 1893