On the alternating direction method of multipliers for nonnegative inverse eigenvalue problems with partial eigendata

被引:3
|
作者
Zhao, Zhi [1 ]
Bai, Zhengjian [1 ]
Chen, Guizhi [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonnegative matrix; Inverse problem; Alternating direction method of multipliers; Variational inequality; MONOTONE VARIATIONAL-INEQUALITIES; PRESCRIBED EIGENVALUES; MATRICES;
D O I
10.1016/j.cam.2012.09.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonnegative inverse eigenvalue problem with partial eigendata, which aims to find a nonnegative matrix such that it is nearest to a pre-estimated nonnegative matrix and satisfies the prescribed eigendata. In this paper, we propose several iterative schemes based on the alternating direction method of multipliers for solving the nonnegative inverse problem. We also extend our schemes to the symmetric case and the cases of prescribed lower bounds and of prescribed entries. Numerical tests (including a practical engineering application in vibrations) show the efficiency of the proposed iterative schemes. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 134
页数:21
相关论文
共 50 条
  • [1] Nonnegative inverse eigenvalue problems with partial eigendata
    Zheng-Jian Bai
    Stefano Serra-Capizzano
    Zhi Zhao
    [J]. Numerische Mathematik, 2012, 120 : 387 - 431
  • [2] Nonnegative inverse eigenvalue problems with partial eigendata
    Bai, Zheng-Jian
    Serra-Capizzano, Stefano
    Zhao, Zhi
    [J]. NUMERISCHE MATHEMATIK, 2012, 120 (03) : 387 - 431
  • [3] Alternating projection method for doubly stochastic inverse eigenvalue problems with partial eigendata
    Chen, Meixiang
    Weng, Zhifeng
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (05):
  • [4] Alternating projection method for doubly stochastic inverse eigenvalue problems with partial eigendata
    Meixiang Chen
    Zhifeng Weng
    [J]. Computational and Applied Mathematics, 2021, 40
  • [5] Applications of the alternating direction method of multipliers to the semidefinite inverse quadratic eigenvalue problem with a partial eigenstructure
    Bai, Zhengjian
    Chen, Meixiang
    Yuan, Xiaoming
    [J]. INVERSE PROBLEMS, 2013, 29 (07)
  • [6] ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR LINEAR INVERSE PROBLEMS
    Jiao, Yuling
    Jin, Qinian
    Lu, Xiliang
    Wang, Weijie
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2114 - 2137
  • [7] Symmetric tridiagonal inverse quadratic eigenvalue problems with partial eigendata
    Bai, Zheng-Jian
    [J]. INVERSE PROBLEMS, 2008, 24 (01)
  • [8] Semidefinite inverse eigenvalue problems with prescribed entries and partial eigendata
    Yao, Teng-Teng
    Bai, Zheng-Jian
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 287 : 115 - 124
  • [9] Preconditioned alternating direction method of multipliers for inverse problems with constraints
    Jiao, Yuling
    Jin, Qinian
    Lu, Xiliang
    Wang, Weijie
    [J]. INVERSE PROBLEMS, 2017, 33 (02)
  • [10] Relaxing Alternating Direction Method of Multipliers (ADMM) for Linear Inverse Problems
    Wu, Zehui
    Lu, Shuai
    [J]. NEW TRENDS IN PARAMETER IDENTIFICATION FOR MATHEMATICAL MODELS, 2018, : 317 - 345