STURM GLOBAL ATTRACTORS FOR S1-EQUIVARIANT PARABOLIC EQUATIONS

被引:8
|
作者
Fiedler, Bernold [1 ]
Rocha, Carlos [2 ,3 ]
Wolfrum, Matthias [2 ,3 ]
机构
[1] Free Univ Berlin, Inst Math 1, D-14195 Berlin, Germany
[2] Univ Tecn Lisboa, Dept Matemat, Inst Super Tecn, Ctr Anal Matemat Geometria & Sistemas Dinam, P-1049001 Lisbon, Portugal
[3] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
关键词
Global attractors; semilinear parabolic equations; periodic boundary conditions; REACTION-DIFFUSION-EQUATIONS; HETEROCLINIC ORBITS; ROTATING WAVES; REALIZATION; DYNAMICS; SYSTEMS;
D O I
10.3934/nhm.2012.7.617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a semilinear parabolic equation of the form u(t) = u(xx) + f(u, v(x)) defined on the circle x is an element of S-1 = R/2 pi Z. For a dissipative nonlinearity f this equation generates a dissipative semiflow in the appropriate function space, and the corresponding global attractor A(f) is called a Sturm attractor. If f = f(u, p) is even in p, then the semiflow possesses an embedded flow satisfying Neumann boundary conditions on the half-interval (0, pi). This is due to O(2) equivariance of the semiflow and, more specifically, due to reflection at the axis through x = 0, pi is an element of S-1. For general f = f(u, p), where only SO(2) equivariance prevails, we will nevertheless use the Sturm permutation sigma introduced for the characterization of Neumann flows to obtain a purely combinatorial characterization of the Sturm attractors A(f) on the circle. With this Sturm permutation sigma we then enumerate and describe the heteroclinic connections of all Morse-Smale attractors A(f) with m stationary solutions and q periodic orbits, up to n := m + 2q <= 9.
引用
收藏
页码:617 / 659
页数:43
相关论文
共 50 条