On the operation of the chemothermal instability in primordial star-forming clouds

被引:12
|
作者
Greif, Thomas H. [1 ,2 ]
Springel, Volker [3 ,4 ]
Bromm, Volker [5 ,6 ]
机构
[1] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[2] Max Planck Inst Astrophys, D-85740 Garching, Germany
[3] Heidelberg Inst Theoret Studies, D-69118 Heidelberg, Germany
[4] Heidelberg Univ, Zentrum Astron, Astron Recheninst, D-69120 Heidelberg, Germany
[5] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA
[6] Univ Texas Austin, Texas Cosmol Ctr, Austin, TX 78712 USA
关键词
hydrodynamics; stars: formation; galaxies: formation; galaxies: high-redshift; cosmology: theory; early Universe; INITIAL MASS FUNCTION; POPULATION-III STARS; BARYONIC STRUCTURE FORMATION; 1ST COSMIC STRUCTURES; DARK-MATTER; GAS CLOUDS; MAGNETIC-FIELDS; METAL-FREE; ASTROPHYSICAL MEDIA; THERMAL-INSTABILITY;
D O I
10.1093/mnras/stt1251
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the operation of the chemothermal instability in primordial star-forming clouds with a suite of three-dimensional, moving-mesh simulations. In line with previous studies, we find that the gas at the centre of high-redshift minihaloes becomes chemothermally unstable as three-body reactions convert the atomic hydrogen into a fully molecular gas. The competition between the increasing rate at which the gas cools and the increasing optical depth to H-2 line emission creates a characteristic dip in the cooling time over the free-fall time on a scale of 100 au. As a result, the free-fall time decreases to below the sound-crossing time, and the cloud may become gravitationally unstable and fragment on a scale of a few tens of au during the initial free-fall phase. In three of the nine haloes investigated, secondary clumps condense out of the parent cloud, which will likely collapse in their own right before they are accreted by the primary clump. In the other haloes, fragmentation at such an early stage is less likely. However, given that previous simulations have shown that the infall velocity decreases substantially once the gas becomes rotationally supported, the amount of time available for perturbations to develop may be much greater than is evident from the limited period of time simulated here.
引用
收藏
页码:3408 / 3422
页数:15
相关论文
共 50 条
  • [1] On the effects of rotation in primordial star-forming clouds
    Dutta, Jayanta
    ASTRONOMY & ASTROPHYSICS, 2016, 585
  • [2] Ionization degree and magnetic diffusivity in the primordial star-forming clouds
    Nakauchi, Daisuke
    Omukai, Kazuyuki
    Susa, Hajime
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (02) : 1846 - 1862
  • [3] Angular momentum distribution during the collapse of primordial star-forming clouds
    Jayanta Dutta
    Astrophysics and Space Science, 2016, 361
  • [4] Angular momentum distribution during the collapse of primordial star-forming clouds
    Dutta, Jayanta
    ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (01)
  • [5] A turbulent-entropic instability and the fragmentation of star-forming clouds
    Keto, Eric
    Field, George B.
    Blackman, Eric G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 492 (04) : 5870 - 5877
  • [7] THE TWO STATES OF STAR-FORMING CLOUDS
    Collins, David C.
    Kritsuk, Alexei G.
    Padoan, Paolo
    Li, Hui
    Xu, Hao
    Ustyugov, Sergey D.
    Norman, Michael L.
    ASTROPHYSICAL JOURNAL, 2012, 750 (01):
  • [8] FORMATION OF STRUCTURE IN STAR-FORMING CLOUDS
    PUDRITZ, RE
    CANADIAN JOURNAL OF PHYSICS, 1990, 68 (09) : 808 - 823
  • [9] Unbound star-forming molecular clouds
    Ward, Rachel L.
    Wadsley, James
    Sills, Alison
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 439 (01) : 651 - 658
  • [10] On the star-forming ability of Molecular Clouds
    Anathpindika, S.
    Burkert, A.
    Kuiper, R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 474 (01) : 1277 - 1287