Rotenone causes cytotoxicity in astrocytic cell culture by glial activation, which is linked to free radical generation. The present study is an investigation to explore whether rotenone could also cause cellular toxicity in mouse neuroblastoma cells (Neuro-2a) under treatment similar to astroglial cells. The effect of rotenone (0.1, 1, and 10 mu M) on mitochondrial dehydrogenase enzyme activity by MTT reduction assay, PI uptake, total reactive oxygen species (ROS)/superoxide levels, nitrite levels, extent of DNA damage (by comet assay), and nuclear morphological alteration by Hoechst staining was studied. Caspase-3 and Ca2+/calmodulin-dependent protein kinase II (CaMKII alpha) gene expression was determined to evaluate the apoptotic cell death and calcium kinase, respectively. Calcium level was estimated fluorometrically using fura-2A stain. Rotenone decreased mitochondrial dehydrogenase enzyme activity and generated ROS, superoxide, and nitrite. Rotenone treatment impaired cell intactness and nuclear morphology as depicted by PI uptake and chromosomal condensation of Neuro-2a cells, respectively. In addition, rotenone resulted in increased intracellular Ca+2 level, caspase-3, and CaMKII alpha expression. Furthermore, co-exposure of melatonin (300 mu M), an antioxidant to cell culture, significantly suppressed the rotenone-induced decreased mitochondrial dehydrogenase enzyme activity, elevated ROS and RNS. However, melatonin was found ineffective to counteract rotenone-induced increased PI uptake, altered morphological changes, DNA damage, elevated Ca+2, and increased expression of caspase-3 and CaMKII alpha. The study indicates that intracellular calcium rather than oxidative stress is a major factor for rotenone-induced apoptosis in neuronal cells.