Cocycles with one exponent over partially hyperbolic systems

被引:34
|
作者
Kalinin, Boris [1 ]
Sadovskaya, Victoria [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Linear cocycle; Lyapunov exponent; Partially hyperbolic system; Amenable reduction; ERGODIC-THEORY;
D O I
10.1007/s10711-012-9808-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Holder continuous linear cocycles over partially hyperbolic diffeomorphisms. For fiber bunched cocycles with one Lyapunov exponent we show continuity of measurable invariant conformal structures and sub-bundles. Further, we establish a continuous version of Zimmer's Amenable Reduction Theorem. For cocycles over hyperbolic systems we also obtain polynomial growth estimates for the norm and the quasiconformal distortion from the periodic data.
引用
收藏
页码:167 / 188
页数:22
相关论文
共 50 条
  • [1] Cocycles with one exponent over partially hyperbolic systems
    Boris Kalinin
    Victoria Sadovskaya
    [J]. Geometriae Dedicata, 2013, 167 : 167 - 188
  • [2] Diffeomorphism cocycles over partially hyperbolic systems
    Sadovskaya, Victoria
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (01) : 263 - 286
  • [3] COCYCLES OVER PARTIALLY HYPERBOLIC MAPS
    Avila, Artur
    Santamaria, Jimmy
    Viana, Marcelo
    Wilkinson, Amie
    [J]. ASTERISQUE, 2013, (358) : 1 - +
  • [4] COCYCLES' STABILITY FOR PARTIALLY HYPERBOLIC SYSTEMS
    Katok, A.
    Kononenko, A.
    [J]. MATHEMATICAL RESEARCH LETTERS, 1996, 3 (02) : 191 - 210
  • [5] ON REGULARITY OF CONJUGACY BETWEEN LINEAR COCYCLES OVER PARTIALLY HYPERBOLIC SYSTEMS
    Kalinin, Boris
    Sadovskaya, Victoria
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (05) : 1287 - 1303
  • [6] HOLONOMIES AND COHOMOLOGY FOR COCYCLES OVER PARTIALLY HYPERBOLIC DIFFEOMORPHISMS
    Kalinin, Boris
    Sadovskaya, Victoria
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (01) : 245 - 259
  • [7] LINEAR COCYCLES OVER HYPERBOLIC SYSTEMS AND CRITERIA OF CONFORMALITY
    Kalinin, Boris
    Sadovskaya, Victoria
    [J]. JOURNAL OF MODERN DYNAMICS, 2010, 4 (03) : 419 - 441
  • [8] Cohomology of fiber bunched cocycles over hyperbolic systems
    Sadovskaya, Victoria
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 2669 - 2688
  • [9] Positivity of the Top Lyapunov Exponent for Cocycles on Semisimple Lie Groups over Hyperbolic Bases
    Mário Bessa
    Jairo Bochi
    Michel Cambrainha
    Carlos Matheus
    Paulo Varandas
    Disheng Xu
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2018, 49 : 73 - 87
  • [10] Positivity of the Top Lyapunov Exponent for Cocycles on Semisimple Lie Groups over Hyperbolic Bases
    Bessa, Mario
    Bochi, Jairo
    Cambrainha, Michel
    Matheus, Carlos
    Varandas, Paulo
    Xu, Disheng
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (01): : 73 - 87