An adaptive multiscale method for crack propagation and crack?coalescence

被引:40
|
作者
Holl, M. [1 ]
Loehnert, S. [1 ]
Wriggers, P. [1 ]
机构
[1] Leibniz Univ Hannover, Inst Continuum Mech, D-30167 Hannover, Germany
关键词
XFEM; multiscale method; crack propagation; crack coalescence; FINITE-ELEMENT-METHOD; BLENDING ELEMENTS; GROWTH; DISCONTINUITIES; PARTITION;
D O I
10.1002/nme.4373
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work presents a new multiscale technique for the efficient simulation of crack propagation and crack coalescence of macrocracks and microcracks. The fully adaptive multiscale method is able to capture localization effect mesh independently. By modeling macrocracks and microcracks, the extended finite element method offers an accurate solution and captures cracks and their propagation without changing the mesh topology. Propagating and coaliting cracks of different length scales can therefore be easily modeled and updated during the computation process. Hence, the presented method is an efficient and accurate option for modeling cracks of different length scales. This is demonstrated in several numerical examples showing the interaction of microcracks and macrocracks. Copyright (c)?2012 John Wiley & Sons, Ltd.
引用
收藏
页码:23 / 51
页数:29
相关论文
共 50 条
  • [1] A Concurrent Multiscale Method for Simulation of Crack Propagation
    Jingkai Wu
    Hongwu Zhang
    Yonggang Zheng
    [J]. Acta Mechanica Solida Sinica, 2015, 28 : 235 - 251
  • [2] A CONCURRENT MULTISCALE METHOD FOR SIMULATION OF CRACK PROPAGATION
    Wu, Jingkai
    Zhang, Hongwu
    Zheng, Yonggang
    [J]. ACTA MECHANICA SOLIDA SINICA, 2015, 28 (03) : 235 - 251
  • [3] A CONCURRENT MULTISCALE METHOD FOR SIMULATION OF CRACK PROPAGATION
    Jingkai Wu
    Hongwu Zhang
    Yonggang Zheng
    [J]. Acta Mechanica Solida Sinica, 2015, 28 (03) : 235 - 251
  • [4] A multiscale extended finite element method for crack propagation
    Guidault, P. -A.
    Allix, O.
    Champaney, L.
    Cornuault, C.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (05) : 381 - 399
  • [5] Adaptive concurrent multiscale model for fracture and crack propagation in heterogeneous media
    Vernerey, Franck J.
    Kabiri, Mirmohammadreza
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 276 : 566 - 588
  • [6] A variational multiscale method to model crack propagation at finite strains
    Mergheim, J.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (03) : 269 - 289
  • [7] Multiscale modeling of dynamic crack propagation
    Chen, James
    Wang, Xianqiao
    Wang, Huachuan
    Lee, James D.
    [J]. ENGINEERING FRACTURE MECHANICS, 2010, 77 (04) : 736 - 743
  • [8] Crack propagation and coalescence under uniaxial loading
    Park, N
    Park, P
    Hong, C
    Jeon, S
    [J]. ROCK MECHANICS: A CHALLENGE FOR SOCIETY, 2001, : 271 - 276
  • [9] Modeling of crack initiation, propagation and coalescence in rocks
    Bruno Gonçalves da Silva
    Herbert H. Einstein
    [J]. International Journal of Fracture, 2013, 182 : 167 - 186
  • [10] Modeling of crack initiation, propagation and coalescence in rocks
    da Silva, Bruno Goncalves
    Einstein, Herbert H.
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 2013, 182 (02) : 167 - 186