ISOTOPIC CONVERGENCE THEOREM

被引:1
|
作者
Li, J. [1 ]
Peters, T. J. [2 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ Connecticut, Dept Comp Sci & Engn, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
Knot; ambient isotopy; convergence; total curvature; visualization; COMPUTATIONAL TOPOLOGY; OFFSET CURVES; SUBDIVISION;
D O I
10.1142/S0218216513500120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When approximating a space curve, it is natural to consider whether the knot type of the original curve is preserved in the approximant. This preservation is of strong contemporary interest in computer graphics and visualization. We establish a criterion to preserve knot type under approximation that relies upon pointwise convergence and convergence in total curvature.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] ISOTOPIC CONVERGENCE THEOREM (vol 22, 1350012, 2013)
    Li, J.
    Peters, T. J.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2013, 22 (05)
  • [2] CONVERGENCE THEOREM
    APPLING, WDL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (06): : A570 - A570
  • [3] RATE OF CONVERGENCE IN MARTINGALE CONVERGENCE THEOREM
    HEYDE, CC
    ADVANCES IN APPLIED PROBABILITY, 1977, 9 (02) : 196 - 196
  • [4] A Unified Convergence Theorem
    Jun De Wu
    Jian Wen Luo
    Shi Jie Lu
    Acta Mathematica Sinica, 2005, 21 : 315 - 322
  • [5] A MOMENT CONVERGENCE THEOREM
    TAKACS, L
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (08): : 742 - 746
  • [6] BOUNDED CONVERGENCE THEOREM
    WADE, WR
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (04): : 387 - 389
  • [7] ON SEMIMARTINGALE CONVERGENCE THEOREM
    JOHANSEN, S
    KARUSH, J
    ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (03): : 690 - &
  • [8] CONVERGENCE THEOREM WITH BOUNDARY
    SIMONS, S
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1972, (31-3): : 359 - 363
  • [9] CONVERGENCE THEOREM WITH BOUNDARY
    SIMONS, S
    PACIFIC JOURNAL OF MATHEMATICS, 1972, 40 (03) : 703 - &
  • [10] A DOMINATED CONVERGENCE THEOREM
    WAYMENT, SG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 118 - &