On the poles of Rankin-Selberg convolutions of modular forms

被引:5
|
作者
Li, XJ
机构
关键词
poles; Rankin-Selberg convolutions; zeros; Riemann zeta function; cusp forms;
D O I
10.1090/S0002-9947-96-01540-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Rankin-Selberg convolution is usually normalized by the multiplication of a zeta factor. One naturally expects that the non-normalized convolution will have poles where the zeta factor has zeros, and that these poles will have the same order as the zeros of the zeta factor. However, this will only happen if the normalized convolution does not vanish at the zeros of the zeta factor. In this paper, we prove that given any point inside the critical strip, which is not equal to 1/2 and is not a zero of the Riemann zeta function, there exist infinitely many cusp forms whose normalized convolutions do not vanish at that point.
引用
收藏
页码:1213 / 1234
页数:22
相关论文
共 50 条
  • [1] Euler systems for Rankin-Selberg convolutions of modular forms
    Lei, Antonio
    Loeffler, David
    Zerbes, Sarah Livia
    ANNALS OF MATHEMATICS, 2014, 180 (02) : 653 - 771
  • [2] Relative modular symbols and Rankin-Selberg convolutions
    Kazhdan, D
    Mazur, B
    Schmidt, CG
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2000, 519 : 97 - 141
  • [3] RANKIN-SELBERG CONVOLUTIONS
    JACQUET, H
    PIATETSKIISHAPIRO, II
    SHALIKA, JA
    AMERICAN JOURNAL OF MATHEMATICS, 1983, 105 (02) : 367 - 464
  • [4] Non-vanishing of Rankin-Selberg convolutions for Hilbert modular forms
    Alia Hamieh
    Naomi Tanabe
    Mathematische Zeitschrift, 2021, 297 : 81 - 97
  • [5] Non-vanishing of Rankin-Selberg convolutions for Hilbert modular forms
    Hamieh, Alia
    Tanabe, Naomi
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) : 81 - 97
  • [6] Remarks on Rankin-Selberg convolutions
    Cogdell, JW
    Piatetski-Shapiro, II
    CONTRIBUTIONS TO AUTOMORPHIC FORMS, GEOMETRY, AND NUMBER THEORY, 2004, : 255 - 278
  • [7] DETERMINING HILBERT MODULAR FORMS BY CENTRAL VALUES OF RANKIN-SELBERG CONVOLUTIONS: THE LEVEL ASPECT
    Hamieh, Alia
    Tanabe, Naomi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (12) : 8781 - 8797
  • [8] Determining Hilbert modular forms by central values of Rankin-Selberg convolutions: the weight aspect
    Hamieh, Alia
    Tanabe, Naomi
    RAMANUJAN JOURNAL, 2018, 45 (03): : 615 - 637
  • [9] Regulators for Rankin-Selberg products of modular forms
    Brunault, Francois
    Chida, Masataka
    ANNALES MATHEMATIQUES DU QUEBEC, 2016, 40 (02): : 221 - 249
  • [10] RELATIVE MODULAR SYMBOLS AND P-ADIC RANKIN-SELBERG CONVOLUTIONS
    SCHMIDT, CG
    INVENTIONES MATHEMATICAE, 1993, 112 (01) : 31 - 76