Stability analysis of dynamic nonlinear interval type-2 TSK fuzzy control systems based on describing function

被引:10
|
作者
Namadchian, Zahra [1 ]
Zare, Assef [1 ]
机构
[1] Islamic Azad Univ, Dept Elect Engn, Gonabad Branch, Gonabad, Iran
关键词
Interval type-2 Takagi-Sugeno-Kang fuzzy control systems; Stability; Limit cycle; Gain margin; Phase margin; Describing function; OPTIMIZATION; STABILIZATION; UNCERTAINTY; PREDICTION; SETS;
D O I
10.1007/s00500-020-04811-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on the limit cycles prediction problem to discuss the stability analysis of dynamic nonlinear interval type-2 Takagi-Sugeno-Kang fuzzy control systems (NIT2 TSK FCSs) with adjustable parameters. First, in order to alleviate computational burden, a simple architecture of NIT2 TSK FCS using two embedded nonlinear type-1 TSK fuzzy control systems (NT1 TSK FCSs) is proposed. Then, describing function (DF) of NIT2 TSK FCS is obtained based on the DFs of embedded NT1 TSK FCSs. Subsequently, integrating the stability equation and parameter plane approaches provides a solution to identify the limit cycle and the asymptotically stable regions. Moreover, particle swarm optimization technique is applied to minimize the limit cycle region. Furthermore, for robust design, a gain-phase margin tester is utilized to specify the minimum gain margin (GM(min)) and phase margin (PMmin) when limit cycles can arise. Finally, two simulation examples are considered to validate the advantages of the presented method.
引用
收藏
页码:14623 / 14636
页数:14
相关论文
共 50 条
  • [1] Stability analysis of dynamic nonlinear interval type-2 TSK fuzzy control systems based on describing function
    Zahra Namadchian
    Assef Zare
    [J]. Soft Computing, 2020, 24 : 14623 - 14636
  • [2] On the Stability of Interval Type-2 TSK Fuzzy Logic Control Systems
    Biglarbegian, Mohammad
    Melek, William W.
    Mendel, Jerry M.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (03): : 798 - 818
  • [3] Stability Analysis of Discrete Type-2 TSK Fuzzy Systems with Interval Uncertainty
    Jafarzadeh, Saeed
    Fadali, M. Sami
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [4] Stability analysis of recurrent type-2 TSK fuzzy systems with nonlinear consequent part
    Tavoosi, Jafar
    Suratgar, Amir Abolfazl
    Menhaj, Mohammad Bagher
    [J]. NEURAL COMPUTING & APPLICATIONS, 2017, 28 (01): : 47 - 56
  • [5] Stability analysis of dynamic interval type-2 fuzzy control systems in frequency domain
    Namadchian, Zahra
    Zare, Assef
    [J]. ASIAN JOURNAL OF CONTROL, 2021, 23 (06) : 2729 - 2739
  • [6] Stability analysis of recurrent type-2 TSK fuzzy systems with nonlinear consequent part
    Jafar Tavoosi
    Amir Abolfazl Suratgar
    Mohammad Bagher Menhaj
    [J]. Neural Computing and Applications, 2017, 28 : 47 - 56
  • [7] Nonlinear Dynamical System Identification Based on Evolutionary Interval Type-2 TSK Fuzzy Systems
    Zhang Jianhua
    Chen Hongjie
    Wang Rubin
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 2900 - 2905
  • [8] Stability analysis of interval type-2 fuzzy-model-based control systems
    Lam, H. K.
    Seneviratne, Lakmal D.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (03): : 617 - 628
  • [9] Online learning of an interval type-2 TSK fuzzy logic controller for nonlinear systems
    Khater, A. Aziz
    El-Nagar, Ahmad M.
    El-Bardini, Mohammad
    El-Rabaie, Nabila M.
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (16): : 9254 - 9285
  • [10] Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure
    El-Nagar, Ahmad M.
    [J]. ISA TRANSACTIONS, 2018, 72 : 205 - 217