A survey on low-power wide area networks for IoT applications

被引:57
|
作者
Bembe, Mncedisi [1 ]
Abu-Mahfouz, Adnan [2 ]
Masonta, Moshe [2 ]
Ngqondi, Tembisa [1 ]
机构
[1] Univ Mpumalanga, SCMS, ZA-1200 Mbombela, South Africa
[2] Meraka Inst, CSIR, ZA-1000 Pretoria, South Africa
关键词
Internet of things; Cellular networks; Sensors; Wireless sensor networks; Standards; Analytical models; HEALTH-CARE; INTERNET; THINGS; ARCHITECTURE; MANAGEMENT; DESIGN; GAME; 5G; VIRTUALIZATION; OPPORTUNITIES;
D O I
10.1007/s11235-019-00557-9
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
We are on the entry of the exponential advancement of the internet-of-things (IoT) due to the quick development of internet-connected smart-objects. As the number of connected smart-objects increase, IoT will continue to advance by providing connectivity and interactions between the physical and the cyber world. This connectivity is characterized by low throughput, delay sensitivity, small and wide coverage, low power consumption, low device, etc. Which explains the emergence of low power wide area network (LPWAN). LPWAN technologies are an alternative promising connectivity solutions for Internet of Things. However, the lack of an overall LPWAN knowledge that present a comprehensive analysis of LPWAN technologies is presently constraining the achievement of the modern IoT vision. In this paper, we begin with a detailed analysis of the conventional high power long-range network technologies that considers IoT applications and requirements. We further point out the need for dedicated low power wide area technologies in IoT systems. In addition, we analyse the technical specification based on the PHY and MAC layers of the technologies that are already deployed, or likely to be deployed. The focus is to incorporate both standard and proprietary technologies in our study. Furthermore, we present the modelling techniques and performance metrics that are adopted in LPWAN networks analysis. Finally, challenges and open problems are presented. The main contribution of this study is that it provides an enhanced summary of the current state-of-the-art of LPWAN suitable to meet the requirements of IoT, while uniquely providing LPWAN's modelling techniques, performance metrics and their associated enablers.
引用
收藏
页码:249 / 274
页数:26
相关论文
共 50 条
  • [1] A survey on low-power wide area networks for IoT applications
    Mncedisi Bembe
    Adnan Abu-Mahfouz
    Moshe Masonta
    Tembisa Ngqondi
    Telecommunication Systems, 2019, 71 : 249 - 274
  • [2] Resource Efficiency in Low-Power Wide-Area Networks for IoT Applications
    Qin, Zhijin
    McCann, Julie A.
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,
  • [3] Survey on Low Power Wide Area Networks in IoT
    Katusic, Damjan
    Skocir, Pavle
    Kusek, Mario
    Cavrak, Igor
    PROCEEDINGS OF 2020 INTERNATIONAL CONFERENCE ON SMART SYSTEMS AND TECHNOLOGIES (SST 2020), 2020, : 231 - 237
  • [4] Crowdsourcing Low-Power Wide-Area IoT Networks
    Zhang, Keyi
    Marchiori, Alan
    2017 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM), 2017,
  • [5] LOW-POWER WIDE-AREA NETWORKS FOR SUSTAINABLE IoT
    Qin, Zhijin
    Li, Frank Y.
    Li, Geoffrey Ye
    McCann, Julie A.
    Ni, Qiang
    IEEE WIRELESS COMMUNICATIONS, 2019, 26 (03) : 140 - 145
  • [6] Data Flow in Low-Power Wide-Area IoT Applications
    Lukic, Milan
    Mihajlovic, Zivorad
    Mezei, Ivan
    2018 26TH TELECOMMUNICATIONS FORUM (TELFOR), 2018, : 57 - 60
  • [7] Hybrid Low-Power Wide-Area Mesh Network for IoT Applications
    Jiang, Xiaofan
    Zhang, Heng
    Yi, Edgardo Alberto Barsallo
    Raghunathan, Nithin
    Mousoulis, Charilaos
    Chaterji, Somali
    Peroulis, Dimitrios
    Shakouri, Ali
    Bagchi, Saurabh
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (02) : 901 - 915
  • [8] Low-power Wide-area Networks: Enabling Geo-IoT
    De Milliano, Sabine
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2016, 30 (11): : 24 - 25
  • [9] Low-Power Wide-Area Networks for Industrial Sensing Applications
    Sommer, Philipp
    Maret, Yannick
    Dzung, Dacfey
    2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INTERNET (ICII 2018), 2018, : 23 - 32
  • [10] Coded Redundant Message Transmission Schemes for Low-Power Wide Area IoT Applications
    Montejo-Sanchez, Samuel
    Azurdia-Meza, Cesar A.
    Souza, Richard Demo
    Garcia Fernandez, Evelio Martin
    Soto, Ismael
    Hoeller Jr, Arliones
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (02) : 584 - 587