Chaos and crises in more than two dimensions

被引:13
|
作者
Moresco, P [1 ]
Dawson, SP [1 ]
机构
[1] CONSEJO NACL INVEST CIENT & TECN,INST ASTRON & FIS ESPACIO,RA-1428 BUENOS AIRES,DF,ARGENTINA
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 05期
关键词
D O I
10.1103/PhysRevE.55.5350
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Noisy chaotic trajectories, with finite-time Lyapunov exponents that fluctuate about zero, are basically unshadowable [S. Dawson, C. Grebogi, T. Sauer, and J. A. Yorke, Phys. Rev. Lett 73, 1927 (1994)]. This can occur when periodic orbits, with different numbers of unstable directions, coexist inside the attractor. The presence of a Henon-type chaotic saddle (i.e., a nonattracting chaotic set with a structure similar to that of the Henon attractor) guarantees such coexistence in a persistent manner [S. P. Dawson, Phys. Rev. Lett. 76, 4348 (1996)]. In this paper, we describe how these sets appear naturally in maps of more than two dimensions, how they can be found, and what crises they produce.
引用
收藏
页码:5350 / 5360
页数:11
相关论文
共 50 条